Java线程并发中常见的锁机制详细介绍

随着互联网的蓬勃发展,越来越多的互联网企业面临着用户量膨胀而带来的并发安全问题。本文着重介绍了在java并发中常见的几种锁机制。

1.偏向锁

偏向锁是JDK1.6提出来的一种锁优化的机制。其核心的思想是,如果程序没有竞争,则取消之前已经取得锁的线程同步操作。也就是说,若某一锁被线程获取后,便进入偏向模式,当线程再次请求这个锁时,就无需再进行相关的同步操作了,从而节约了操作时间,如果在此之间有其他的线程进行了锁请求,则锁退出偏向模式。在JVM中使用-XX:+UseBiasedLocking

package jvmProject;
import java.util.List;
import java.util.Vector;
public class Biased {
  public static List<Integer> numberList = new Vector<Integer>();
  public static void main(String[] args) {
    long begin = System.currentTimeMillis();
    int count = 0;
    int startnum = 0;
    while(count<10000000){
      numberList.add(startnum);
      startnum+=2;
      count++;
    }
    long end = System.currentTimeMillis();
    System.out.println(end-begin);
  }
}

初始化一个Vector,往里面添加10000000个Integer对象,然后输出时间差。以此来测试偏向锁的性能。至于为什么要使用Vector而不使用ArrayList呢?

因为ArrayList是线程不安全的,Vector是线程安全的。这样说可能还不够具体,可以翻看一下源码吧。

Vector中的几乎所有操作是带有sychronized的,而ArrayList是没有的,所以Vector是线程安全的。

接下来我们来测试一下,开启偏向锁和不开启偏向锁对程序性能的影响有多大。

配置JVM启动(开启偏向锁)参数为:

配置JVM启动(关闭偏向锁)参数为:

Perfect!开启偏向锁的程序运行时间明显较短,开启偏向锁比不开启偏向锁,在单个线程中操作一个对象的同步方法,是有一定的优势的。其实也可以这样理解,当只有一个线程操作带有同步方法的Vector对象的时候,此时对Vector的操作就转变成了对ArrayList的操作。

偏向锁在锁竞争激烈的场合没有太强的优化效果,因为大量的竞争会导致持有锁的线程不停地切换,锁也很难保持在偏向模式,此时,使用偏向锁不仅得不到性能的优化,反而有可能降低系统的性能,因此,在激烈竞争的场合,可以尝试使用

-XX:-UseBiastedLocking参数禁用偏向锁。

2.轻量级锁

如果偏向锁失败,Java虚拟机就会让线程申请轻量级锁,轻量级锁在虚拟机内部,使用一个成为BasicObjectLock的对象实现的,这个对象内部由一个BasicLock对象和一个持有该锁的Java对象指针组成。BasicObjectLock对象放置在Java栈帧中。在BasicLock对象内部还维护着displaced_header字段,用于备份对象头部的Mark Word.

当一个线程持有一个对象的锁的时候,对象头部Mark Word信息如下

[ptr |00] locked

末尾的两位比特为00,整个Mark Word为指向BasicLock对象的指针。由于BasicObjectLock对象在线程栈中,因此该指针必然指向持有该锁的线程栈空间。当需要判断一个线程是否持有该对象时,只需要简单地判断对象头的指针是否在当前线程的栈地址范围即可。同时,BasicLock对象的displaced_header,备份了原对象的Mark word内容,BasicObjectLock对象的obj字段则指向持有锁的对象头部。

3.重量级锁

当轻量级锁失败,虚拟机就会使用重量级锁。在使用重量级锁的时,对象的Mark Word如下:

[ptr |10] monitor

重量级锁在操作过程中,线程可能会被操作系统层面挂起,如果是这样,线程间的切换和调用成本就会大大提高。

4.自旋锁

自旋锁可以使线程在没有取得锁的时候,不被挂起,而转去执行一个空循环,(即所谓的自旋,就是自己执行空循环),若在若干个空循环后,线程如果可以获得锁,则继续执行。若线程依然不能获得锁,才会被挂起。

使用自旋锁后,线程被挂起的几率相对减少,线程执行的连贯性相对加强。因此,对于那些锁竞争不是很激烈,锁占用时间很短的并发线程,具有一定的积极意义,但对于锁竞争激烈,单线程锁占用很长时间的并发程序,自旋锁在自旋等待后,往往毅然无法获得对应的锁,不仅仅白白浪费了CPU时间,最终还是免不了被挂起的操作 ,反而浪费了系统的资源。

在JDK1.6中,Java虚拟机提供-XX:+UseSpinning参数来开启自旋锁,使用-XX:PreBlockSpin参数来设置自旋锁等待的次数。

在JDK1.7开始,自旋锁的参数被取消,虚拟机不再支持由用户配置自旋锁,自旋锁总是会执行,自旋锁次数也由虚拟机自动调整。

时间: 2016-05-21

java线程并发blockingqueue类使用示例

如果BlockingQueue是满的任何试图往里存东西的操作也会被阻断进入等待状态,直到BlockingQueue里有新的空间才会被唤醒继续操作. BlockingQueue提供的方法主要有: add(anObject): 把anObject加到BlockingQueue里,如果BlockingQueue可以容纳返回true,否则抛出IllegalStateException异常. offer(anObject):把anObject加到BlockingQueue里,如果BlockingQueue

浅谈Java线程并发知识点

发布:一个对象是使它能够被当前范围之外的代码所引用: 常见形式:将对象的的引用存储到公共静态域:非私有方法中返回引用:发布内部类实例,包含引用. 逃逸:在对象尚未准备好时就将其发布. 不要让this引用在构造函数中逸出.例,在构造函数中启动线程,线程会包含对象的引用. 同步容器:对容器的所有状态进行穿行访问,Vector.Hashtable,Cllections.synchronizedMap|List 并发容器:ConcurrentHashMap,CopyOnWriteArrayList,Co

java线程并发cyclicbarrier类使用示例

复制代码 代码如下: package com.yao; import java.util.Random;import java.util.concurrent.CyclicBarrier; /** * CyclicBarrier类似于CountDownLatch也是个计数器, * 不同的是CyclicBarrier数的是调用了CyclicBarrier.await()进入等待的线程数, * 当线程数达到了CyclicBarrier初始时规定的数目时,所有进入等待状态的线程被唤醒并继续. * Cy

java线程并发countdownlatch类使用示例

复制代码 代码如下: package com.yao; import java.util.concurrent.CountDownLatch;import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors; /** * CountDownLatch是个计数器,它有一个初始数, * 等待这个计数器的线程必须等到计数器倒数到零时才可继续. */public class CountDownLatchTe

使用java的HttpClient实现多线程并发

说明:以下的代码基于httpclient4.5.2实现. 我们要使用java的HttpClient实现get请求抓取网页是一件比较容易实现的工作: public static String get(String url) { CloseableHttpResponseresponse = null; BufferedReader in = null; String result = ""; try { CloseableHttpClienthttpclient = HttpClient

java线程并发semaphore类示例

复制代码 代码如下: package com.yao; import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Semaphore; /** * Java 5.0里新加了4个协调线程间进程的同步装置,它们分别是: * Semaphore, CountDownLatch, CyclicBarrier和Exchanger. * 本例主要介

java多线程并发中使用Lockers类将多线程共享资源锁定

复制代码 代码如下: package com.yao; import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReadWriteLock;import java.util.c

java多线程并发executorservice(任务调度)类

复制代码 代码如下: package com.yao; import java.util.concurrent.Executors;import java.util.concurrent.ScheduledExecutorService;import java.util.concurrent.ScheduledFuture;import java.util.concurrent.TimeUnit; /** * 以下是一个带方法的类,它设置了 ScheduledExecutorService ,2

深入探究Java多线程并发编程的要点

关键字synchronized synchronized关键可以修饰函数.函数内语句.无论它加上方法还是对象上,它取得的锁都是对象,而不是把一段代码或是函数当作锁. 1,当两个并发线程访问同一个对象object中的这个synchronized(this)同步代码块时,一段时间只能有一个线程得到执行,而另一个线程只有等当前线程执行完以后才能执行这块代码. 2,当一个线程访问object中的一个synchronized(this)同步代码块时,其它线程仍可以访问这个object中是其它非synchr

Java 多线程并发编程_动力节点Java学院整理

一.多线程 1.操作系统有两个容易混淆的概念,进程和线程. 进程:一个计算机程序的运行实例,包含了需要执行的指令:有自己的独立地址空间,包含程序内容和数据:不同进程的地址空间是互相隔离的:进程拥有各种资源和状态信息,包括打开的文件.子进程和信号处理. 线程:表示程序的执行流程,是CPU调度执行的基本单位:线程有自己的程序计数器.寄存器.堆栈和帧.同一进程中的线程共用相同的地址空间,同时共享进进程锁拥有的内存和其他资源. 2.Java标准库提供了进程和线程相关的API,进程主要包括表示进程的jav

Java多线程并发编程 Volatile关键字

volatile 关键字是一个神秘的关键字,也许在 J2EE 上的 JAVA 程序员会了解多一点,但在 Android 上的 JAVA 程序员大多不了解这个关键字.只要稍了解不当就好容易导致一些并发上的错误发生,例如好多人把 volatile 理解成变量的锁.(并不是) volatile 的特性: 具备可见性 保证不同线程对被 volatile 修饰的变量的可见性. 有一被 volatile 修饰的变量 i,在一个线程中修改了此变量 i,对于其他线程来说 i 的修改是立即可见的. 如: vola

Java多线程并发编程(互斥锁Reentrant Lock)

Java 中的锁通常分为两种: 通过关键字 synchronized 获取的锁,我们称为同步锁,上一篇有介绍到:Java 多线程并发编程 Synchronized 关键字. java.util.concurrent(JUC)包里的锁,如通过继承接口 Lock 而实现的 ReentrantLock(互斥锁),继承 ReadWriteLock 实现的 ReentrantReadWriteLock(读写锁). 本篇主要介绍 ReentrantLock(互斥锁). ReentrantLock(互斥锁)

Java多线程并发编程和锁原理解析

这篇文章主要介绍了Java多线程并发编程和锁原理解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一.前言 最近项目遇到多线程并发的情景(并发抢单&恢复库存并行),代码在正常情况下运行没有什么问题,在高并发压测下会出现:库存超发/总库存与sku库存对不上等各种问题. 在运用了 限流/加锁等方案后,问题得到解决. 加锁方案见下文. 二.乐观锁 & 悲观锁 1.乐观锁 顾名思义,就是很乐观,每次去拿数据的时候都认为别人不会修改,所以不会上锁

Java多线程并发编程 并发三大要素

一.原子性 原子,一个不可再被分割的颗粒.原子性,指的是一个或多个不能再被分割的操作. int i = 1; // 原子操作 i++; // 非原子操作,从主内存读取 i 到线程工作内存,进行 +1,再把 i 写到朱内存. 虽然读取和写入都是原子操作,但合起来就不属于原子操作,我们又叫这种为"复合操作". 我们可以用synchronized 或 Lock 来把这个复合操作"变成"原子操作. 例子: private synchronized void increase

Java多线程并发编程 Synchronized关键字

synchronized 关键字解析 同步锁依赖于对象,每个对象都有一个同步锁. 现有一成员变量 Test,当线程 A 调用 Test 的 synchronized 方法,线程 A 获得 Test 的同步锁,同时,线程 B 也去调用 Test 的 synchronized 方法,此时线程 B 无法获得 Test 的同步锁,必须等待线程 A 释放 Test 的同步锁才能获得从而执行对应方法的代码. 综上,正确使用 synchronized 关键字可确保原子性. synchronized 关键字的特

Java多线程并发开发之DelayQueue使用示例

在学习Java 多线程并发开发过程中,了解到DelayQueue类的主要作用:是一个无界的BlockingQueue,用于放置实现了Delayed接口的对象,其中的对象只能在其到期时才能从队列中取走.这种队列是有序的,即队头对象的延迟到期时间最长.注意:不能将null元素放置到这种队列中. Delayed,一种混合风格的接口,用来标记那些应该在给定延迟时间之后执行的对象.此接口的实现必须定义一个 compareTo 方法,该方法提供与此接口的 getDelay 方法一致的排序. 在网上看到了一些

Python多进程并发与多线程并发编程实例总结

本文实例总结了Python多进程并发与多线程并发.分享给大家供大家参考,具体如下: 这里对python支持的几种并发方式进行简单的总结. Python支持的并发分为多线程并发与多进程并发(异步IO本文不涉及).概念上来说,多进程并发即运行多个独立的程序,优势在于并发处理的任务都由操作系统管理,不足之处在于程序与各进程之间的通信和数据共享不方便:多线程并发则由程序员管理并发处理的任务,这种并发方式可以方便地在线程间共享数据(前提是不能互斥).Python对多线程和多进程的支持都比一般编程语言更高级