Python异常处理如何才能写得优雅(retrying模块)

目录
  • 前言
  • 不负责任版本
  • 简单处理版本
  • 改进处理版本
  • 安装与使用
    • 安装
    • 使用
  • 总结

前言

在写程序时,我们会经常碰到程序出现异常,这时候我们就不得不处理这些异常,以保证程序的健壮性。

处理异常的版本有以下几种,你通常的做法是哪种?

不负责任版本

这种情况下,不作任何处理,任由程序报错,从而导致程序中断。

针对简单的程序,这样做没什么问题,大不了我遇到问题之后把问题解决,然后重新运行。但是如果是复杂的系统就会很麻烦了,可能你一个异常阻塞了系统的运行,带来灾难性的后果。

简单处理版本

简单处理版本,就是加上异常捕获,在发生异常时记录日志,时候可以通过日志来定位异常。

def do_something():
    pass
def log_error(xxx):
    pass

try:
   do_something()
except:
    log_error(xxxx)

改进处理版本

对于简单处理版本做了改进,增加重试次数。这个在爬虫程序中比较常见,第一次请求超时,可能过一会再请求就成功了,所以重试几次可能会消除异常。

attempts = 0
success = False
while attempts < 3 and not success:
    try:
        do_something()
        success = True
    except:
        attempts += 1
        if attempts == 3:
            break

但是这样做仍然不够优雅,你可能要在很多地方去写这种重试的硬编码,程序看起来乱糟糟的。

今天就给大家介绍一个第三方模块 —— retrying。它是对程序中异常重试的一种优雅的解决方案。

安装与使用

安装

安装命令还是那么平淡无奇:

pip install retrying

使用

下面给大家介绍一下这个装饰函数有哪些可以使用的参数。

生命不息,奋斗不止

retrying 提供一个装饰器函数 retry,被装饰的函数会在运行失败的情况下重新执行,默认一直报错就一直重试。

import random
from retrying import retry

@retry
def do_something_unreliable():
    if random.randint(0, 10) > 1:
        print("just have a test")
        raise IOError("raise exception!")
    else:
        return "good job!"

print(do_something_unreliable())

运行这个程序,大家可以看到每次打印“just have a test”这句话的次数都不一样。这是由于我们程序中只要随机整数大于1就会打印并且抛出异常。但是由于我们有装饰器函数 retry,所以在发生异常就会重新再次执行方法,直到随机整数大于1,就会打印“good job!”。

做人不能太固执

这种无休止地重试,简直是浪费生命,浪费资源。我们要建设绿色家园,所以不妨加点限制:

# 最大重试次数
@retry(stop_max_attempt_number=5)
def do_something_limited():
    print("do something several times")
    raise Exception("raise exception")

do_something_limited()

珍惜有限的时间

一寸光阴一寸金,寸金难买寸光阴。我们要珍惜有限的时间,所以不妨给我们的重试加个时间限制:

# 限制最长重试时间(从执行方法开始计算)
@retry(stop_max_delay=5000)
def do_something_in_time():
    print("do something in time")
    raise Exception("raise exception")

do_something_in_time()

驻足欣赏路上风景

人生匆匆数十载,不要一路狂奔而忘记欣赏路边的美景,有时候我们需要花点时间来欣赏一路的美景:

# 设置固定重试时间
@retry(wait_fixed=2000)
def wait_fixed_time():
    print("wait")
    raise Exception("raise exception")

wait_fixed_time()

给失败设个限

虽说我们需要屡败屡战的韧性,但是失败也要有个限度,不能在失败中度过一生:

# 设置重试时间的随机范围
@retry(wait_random_min=1000,wait_random_max=2000)
def wait_random_time():
    print("wait")
    raise Exception("raise exception")

wait_random_time()

有些人值得等待

茫茫人海中,我就是要等到那个对的人:

# 根据异常重试
def retry_if_io_error(exception):
    return isinstance(exception, IOError)

# 设置特定异常类型重试
@retry(retry_on_exception=retry_if_io_error)
def retry_special_error():
    print("retry io error")
    raise IOError("raise exception")

retry_special_error()

我们自己定义一个函数,判断异常类型,然后将函数作为参数传给装饰函数 retry ,如果异常类型符合,就会进行重试。

有些结果是我们希望见到的

人生并不是一帆风顺,有些时候我们会遇到挫折,这些挫折也许在一开始就是我们想要的:

# 通过返回值判断是否重试
def retry_if_result_none(result):
    """Return True if we should retry (in this case when result is None), False otherwise"""
    # return result is None
    if result =="111":
        return True

@retry(retry_on_result=retry_if_result_none)
def might_return_none():
    print("Retry forever ignoring Exceptions with no wait if return value is None")
    return "111"

might_return_none()

这里我们定义了一个判断返回值的函数,然后将这个函数作为参数传给 retry 装饰函数。当结果返回是“111”时,就会一直重试执行 might_return_none 函数。

生活丰富多彩,并不单调

我们的生活是丰富多彩的,从来都没有很单调。所以上面这些参数,我们可以随意组合使用,并不限定每次只能用一个。比如你可以限定遇到 IOError 时进行重试,并且重试次数最多5次。

总结

人生不可重来,但是Python可以重试!

我已经将retrying 这个装饰函数的使用方法毫无保留地奉献给各位看官了,赶快用起来吧!

到此这篇关于Python异常处理如何写得优雅的文章就介绍到这了,更多相关Python异常处理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2022-03-20

Python同时处理多个异常的方法

问题 你有一个代码片段可能会抛出多个不同的异常,怎样才能不创建大量重复代码就能处理所有的可能异常呢? 解决方案 如果你可以用单个代码块处理不同的异常,可以将它们放入一个元组中,如下所示: try: client_obj.get_url(url) except (URLError, ValueError, SocketTimeout): client_obj.remove_url(url) 在这个例子中,元祖中任何一个异常发生时都会执行 remove_url() 方法. 如果你想对其中某个异常进行

Python异常处理总结

本文较为详细的罗列了Python常见的异常处理,供大家参考,具体如下: 1. 抛出异常和自定义异常 Python用异常对象(exception object)表示异常情况,遇到错误后,会引发异常.如果异常对象并未被处理或捕捉,程序就会用所谓的回溯(Traceback,一种错误信息)终止执行. ①.raise 语句 Python中的raise 关键字用于引发一个异常,基本上和C#和Java中的throw关键字相同,如下所示: # -- coding: utf-8 -- def ThorwErr()

Python 异常处理实例详解

一.什么是异常?异常即是一个事件,该事件会在程序执行过程中发生,影响了程序的正常执行.一般情况下,在Python无法正常处理程序时就会发生一个异常.异常是Python对象,表示一个错误.当Python脚本发生异常时我们需要捕获处理它,否则程序会终止执行.二.异常处理捕捉异常可以使用try/except语句.try/except语句用来检测try语句块中的错误,从而让except语句捕获异常信息并处理.如果你不想在异常发生时结束你的程序,只需在try里捕获它. 异常语法:以下为简单的try....

深入理解python try异常处理机制

深入理解python try异常处理机制 #python的try语句有两种风格 #一:种是处理异常(try/except/else) #二:种是无论是否发生异常都将执行最后的代码(try/finally) try/except/else风格 try: <语句> #运行别的代码 except <名字>: <语句> #如果在try部份引发了'name'异常 except <名字>,<数据>: <语句> #如果引发了'name'异常,获得附

Python标准异常和异常处理详解

python提供了两个非常重要的功能来处理python程序在运行中出现的异常和错误.你可以使用该功能来调试python程序. 1.异常处理: 本站Python教程会具体介绍. 2.断言(Assertions):本站Python教程会具体介绍. python标准异常 异常名称 描述 BaseException 所有异常的基类 SystemExit 解释器请求退出 KeyboardInterrupt 用户中断执行(通常是输入^C) Exception 常规错误的基类 StopIteration 迭代

python中的五种异常处理机制介绍

从几年前开始学习编程直到现在,一直对程序中的异常处理怀有恐惧和排斥心理.之所以这样,是因为不了解.这次攻python,首先把自己最畏惧和最不熟悉的几块内容列出来,里面就有「异常处理」这一项. <Dive into Python>并没有专门介绍异常处理,只是例子中用到的时候略微说明了一下.今天下载<Learn Python>,直接进异常处理这块.这一部分有四章,第一章讲解异常处理的一般使用方法,后面的章节深入地讨论其机制.我目前只看了第一章,先学会用,以后有必要的时候再扩展阅读. p

对python中array.sum(axis=?)的用法介绍

根据代码中运行的结果来看,主要由以下几种: 1. sum():将array中每个元素相加的结果 2. axis对应的是维度的相加. 比如: 1.axis=0时,对饮搞得是第一个维度元素的相加, [[0,1,2,3],[4,5,6,7]]和[[1,2,3,4],[5,6,7,8]]对应元素相加[[0+4,1+2,2+3,3+4],[4+5,5+6,7+7,7+8]]=[[1,3,5,7],[9,11,14,16]] 2.axis=1时, 对应的是第二个维度元素相加,这时候保留第一个维度的结构(第一

详解Python中的四种队列

队列是一种只允许在一端进行插入操作,而在另一端进行删除操作的线性表. 在Python文档中搜索队列(queue)会发现,Python标准库中包含了四种队列,分别是queue.Queue / asyncio.Queue / multiprocessing.Queue / collections.deque. collections.deque deque是双端队列(double-ended queue)的缩写,由于两端都能编辑,deque既可以用来实现栈(stack)也可以用来实现队列(queue

Python中的四种交换数值的方法解析

这篇文章主要介绍了Python中的四种交换数值的方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 交换两个变量的值方法,这个面试题如果只写一种当然很简单,没什么可以说的. 今天这个面试是问大家有几种办法来实现交换两个变量的值. 在没开始看具体答案前,你可以先想想看 下面分别来说说这几种方法 方法一 通过新添加中间变量temp的方式,这个方法是最简单的,每个语言都适用. 方法二 Python独有的方法,一行代码就能搞定,直接将两个变量放到元

基于Python 中函数的 收集参数 机制

定义函数的时候,在参数前加了一个 * 号,函数可以接收零个或多个值作为参数.返回结果是一个元组. 传递零个参数时函数并不报错,而是返回一个空元组.但以上这种方法也有局限性,它不能收集关键字参数. 对关键字参数进行收集的另一种 收集参数 机制:使用两个星号 ( ** ) ,用法同上.最后返回一个以参数名为键.参数值为键值的字典. * 和 ** 是可以一起使用的,返回特定的结果. 参数收集的用处之一是使我们编写函数时不用头疼将 N 多个参数都塞在一个括号里,既美观又省事.用处之二便是: * :可以将

详解python中GPU版本的opencv常用方法介绍

引言 本篇是以python的视角介绍相关的函数还有自我使用中的一些问题,本想在这篇之前总结一下opencv编译的全过程,但遇到了太多坑,暂时不太想回看做过的笔记,所以这里主要总结python下GPU版本的opencv. 主要函数说明 threshold():二值化,但要指定设定阈值 blendLinear():两幅图片的线形混合 calcHist() createBoxFilter ():创建一个规范化的2D框过滤器 canny边缘检测 createGaussianFilter():创建一个Ga

简单了解Python中的几种函数

几个特殊的函数(待补充) python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter.map.reduce.lambda.yield lambda >>> g = lambda x,y:x+y #x+y,并返回结果 >>> g(3,4) 7 >>> (lambda x:x**2)(4) #返回4的平方 16 lambda函数的使用方法: 在lambda后面直接跟变量 变量后面是冒号 冒号后面是表达式,表达式计算

python中requests使用代理proxies方法介绍

学习网络爬虫难免遇到使用代理的情况,下面介绍一下如何使用requests设置代理: 如果需要使用代理,你可以通过为任意请求方法提供 proxies 参数来配置单个请求: import requests proxies = { "http": "http://10.10.1.10:3128", "https": "http://10.10.1.10:1080", } requests.get("http://examp

Python中的错误和异常处理简单操作示例【try-except用法】

本文实例讲述了Python中的错误和异常处理操作.分享给大家供大家参考,具体如下: #coding=utf8 print ''''' 程序编译时会检测语法错误. 当检测到一个错误,解释器会引发一个异常,并显示异常的详细信息. 在代码中添加错误检测及异常处理,只需要将代码封装在try-except语句中. try: try_suite except : except_suite ------------------------------------------------------------

对Python中type打开文件的方式介绍

这几天在看<利用Python进行数据分析>,在第六章数据加载.存储.与文件格式中遇到个小问题. 在Linux访问文件是用:!cat ch06/ex1.csv 在Windows命令行中使用:!type ch06\ex1.csv 需要作说明的是: 1.Windows与Linux不同的是win用的"\"添加子目录,而Linux使用"/"添加: 2.win下也可以使用绝对路径进行访问,在所在目录下安如图操作方式进行复制,此时需加引号进行使用:!type &quo