深入理解Python中变量赋值的问题

前言

在Python中变量名规则与其他大多数高级语言一样,都是受C语言影响的,另外变量名是大小写敏感的。
Python是动态类型语言,也就是说不需要预先声明变量类型,变量的类型和值在赋值那一刻被初始化,下面详细介绍了Python的变量赋值问题,一起来学习学习吧。

我们先看一下如下代码:

c = {}

def foo():
 f = dict(zip(list("abcd"), [1, 2 ,3 ,4]))
 c.update(f)

if __name__ == "__main__":
 a = b = d = c

 b['e'] = 5
 d['f'] = 6

 foo()

 print(a)
 print(b)
 print(c)
 print(d)

输出结果:

{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}
{'a': 1, 'c': 3, 'b': 2, 'e': 5, 'd': 4, 'f': 6}

如果你对以上输出结果不感到奇怪,那么就不必往下看了。实际上本文要讨论的内容非常简单,不要为此浪费您宝贵的时间。

Python 属于动态语言,程序的结构可以在运行的过程中随时改变,而且 python 还是弱类型的语言,所以如果你是从静态、强类型编程语言转过来的,理解起 Python 的赋值,刚开始可能会感觉有些代码有点莫名其妙。

可能你会以为上面代码的输出会是这样的:

{}
{'e': 5}
{}
{'f': 6}

你可能认为 a 没有被改变,因为没有看到哪里对它做了改变;b 和 d 的改变是和明显的;c 呢,因为是在函数内被改变的,你可能认为 c 会是一个局部变量,所以全局的 c 不会被改变。

实际上,这里的 a, b, c, d 同时指向了一块内存空间,这可内存空间保存的是一个字典对象。这有点像 c 语言的指针,a, b, c, d 四个指针指向同一个内存地址,也就是给这块内存其了 4 个笔名。所以,不管你改变谁,其他三个变量都会跟着变化。那为什么 c 在函数内部被改变,而且没有用 global 申明,但全局的 c 去被改变了呢?

我们再来看一个例子:

>>>a = {1:1, 2:2}
>>>b = a
>>>a[3] = 3
>>>b
{1: 1, 2: 2, 3: 3}
>>>a = 4
>>>b
{1: 1, 2: 2, 3: 3}
>>>a
4

当 b = a 时,a 与 b 指向同一个对象,所以在 a 中添加一个元素时,b 也发生变化。而当 a = 4 时, a 就已经不再指向字典对象了,而是指向一个新的 int 对象(python 中整数也是对象),这时只有 b 指向字典,所以 a 改变时 b 没有跟着变化。这是只是说明了什么时候赋值变量会发生质的改变,而以上的问题还没有被解决。

那么,我么再来看一个例子:

class TestObj(object):
 pass

x = TestObj()
x.x = 8
d = {"a": 1, "b": 2, "g": x}
xx = d.get("g", None)
xx.x = 10
print("x.x:%s" % x.x)
print("xx.x: %s" % xx.x)
print("d['g'].x: %s" % d['g'].x)

# Out:
# x.x:10
# xx.x: 10
# d['g'].x: 10

由以上的实例可以了解到,如果仅改变对象的属性(或者说成是改变结构),所有指向该对象的变量都会随之改变。但是如果一个变量重新指向了一个对象,那么其他指向该对象的变量不会随之变化。所以,最开始的例子中,c 虽然在函数内部被改变,但是 c 是全局的变量,我们只是在 c 所指向的内存中添加了一个值,而没有将 c 指向另外的变量。

需要注意的是,有人可能会认为上例中的最后一个输出应该是 d['g'].x: 8。 这样理解的原因可能是觉得已经把字典中 ‘g' 所对应的值取出来了,并重新命名为 xx,那么 xx 就与字典无关了。其实际并不是这样的,字典中的 key 所对应的 value 就像是一个指针指向了一片内存区域,访问字典中 key 时就是去该区域取值,如果将值取出来赋值给另外一个变量,例如 xx = d['g'] 或者 xx = d.get("g", None),这样只是让 xx 这个变量也指向了该区域,也就是说字典中的键 ‘g' 和 xx 对象指向了同一片内存空间,当我们只改变 xx 的属性时,字典也会发生变化。

下例更加直观的展示了这一点:

class TestObj(object):
 pass

x = TestObj()
x.x = 8
d = {"a": 1, "b": 2, "g": x}
print(d['g'].x)
xx = d["g"]
xx.x = 10
print(d['g'].x)
xx = 20
print(d['g'].x)

# Out:
# 8
# 10
# 10

这个知识点非常简单,但如果没有理解,可能无法看明白别人的代码。这一点有时候会给程序设计带来很大的便利,例如设计一个在整个程序中保存状态的上下文:

class Context(object):
 pass

def foo(context):
 context.a = 10
 context.b = 20
 x = 1

def hoo(context):
 context.c = 30
 context.d = 40
 x = 1

if __name__ == "__main__":
 context = Context()
 x = None
 foo(context)
 hoo(context)
 print(x)
 print(context.a)
 print(context.b)
 print(context.c)
 print(context.d)

# Out:
# None
# 10
# 20
# 30
# 40

示例中我们可以把需要保存的状态添加到 context 中,这样在整个程序的运行过程中这些状态能够被任何位置被使用。

在来一个终结的例子,执行外部代码:

outer_code.py

from __future__ import print_function

def initialize(context):
 g.a = 333
 g.b = 666
 context.x = 888

def handle_data(context, data):
 g.c = g.a + g.b + context.x + context.y
 a = np.array([1, 2, 3, 4, 5, 6])
 print("outer space: a is %s" % a)
 print("outer space: context is %s" % context)

main_exec.py

from __future__ import print_function

import sys
import imp
from pprint import pprint

class Context(object):
 pass

class PersistentState(object):
 pass

# Script starts from here

if __name__ == "__main__":
 outer_code_moudle = imp.new_module('outer_code')
 outer_code_moudle.__file__ = 'outer_code.py'
 sys.modules["outer_code"] = outer_code_moudle
 outer_code_scope = code_scope = outer_code_moudle.__dict__

 head_code = "import numpy as np\nfrom main_exec import PersistentState\ng=PersistentState()"
 exec(head_code, code_scope)
 origin_global_names = set(code_scope.keys())

 with open("outer_code.py", "rb") as f:
 outer_code = f.read()

 import __future__
 code_obj = compile(outer_code, "outer_code.py", "exec", flags=__future__.unicode_literals.compiler_flag)
 exec(code_obj, code_scope)
 # 去除掉内建名字空间的属性,仅保留外部代码中添加的属性
 outer_code_global_names = set(outer_code_scope.keys()) - origin_global_names

 outer_func_initialize = code_scope.get("initialize", None)
 outer_func_handle_data = code_scope.get("handle_data", None)

 context = Context()
 context.y = 999
 outer_func_initialize(context)
 outer_func_handle_data(context, None)

 g = outer_code_scope["g"]
 assert g.c == 2886
 print("g.c: %s" % g.c)
 print(dir(g))
 print(dir(context))
 pprint(outer_code_moudle.__dict__)

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。

时间: 2017-01-11

Python编程之变量赋值操作实例分析

本文实例讲述了Python编程之变量赋值操作.分享给大家供大家参考,具体如下: #coding=utf8 ''''' Python中主要通过等号(=)进行赋值. Python中的赋值不是直接将一个值赋给一个变量, 而是将该对象的引用(并不是值)赋值给变量. ''' #赋值运算符 Int=12 Float=12.2 String="hello" List=[1,2,"hell"] Touple=(4,"hell") Dictionary={'one

python实现同时给多个变量赋值的方法

本文实例讲述了python实现同时给多个变量赋值的方法.分享给大家供大家参考.具体分析如下: python中可以同时给多个变量赋值,下面列举了三种方法 # Assign values directly a, b = 0, 1 assert a == 0 assert b == 1 # Assign values from a list (r,g,b) = ["Red","Green","Blue"] assert r == "Red&q

go和python变量赋值遇到的一个问题

平时写得多的是python,最近看了一点go,今天碰到了一个问题,和大家分享一下 package main import "fmt" type student struct { Name string Age int } func pase_student() { m := make(map[string]*student) stus := []student{ {Name: "zhou", Age: 24}, {Name: "li", Age:

Python变量赋值的秘密分享

在Python中,我们令一个变量等于另外一个变量时,并不是把值传递给它,而是直接把指向的地址更改了.我们想要查看一个变量在内存中的地址,可以通过id(变量) 来查看.我们通过一个小例子来看看这个有趣的过程. >>> x = 12 >>> y= 13 >>> id(x) >>> id(y) >>> x = y >>> id(x) >>> id(y) 首先给x变量赋值为12,y变量赋值

python变量赋值方法(可变与不可变)

python中不存在所谓的传值调用,一切传递的都是对象的引用,也可以认为是传址. 一.可变对象和不可变对象 Python在heap中分配的对象分成两类:可变对象和不可变对象.所谓可变对象是指,对象的内容可变,而不可变对象是指对象内容不可变. 不可变(immutable):int.字符串(string).float.(数值型number).元组(tuple) 可变(mutable):字典型(dictionary).列表型(list) 不可变类型特点: 看下面的例子(例1) i = 73 i +=

Python 变量类型及命名规则介绍

首字母为英文和下划线,其它部分则可以是英文.数字和下划线(即:_),而变量名称是区分大小写,即变量temp与Temp为不同变量.变量的基本用法如下: 复制代码 代码如下: # 例:使用变量a = 10b = 20print a + b>>> 30   # 输出a加b的值a = 'hello'b = 'python'print a + ' ' + b>>> hello python  # 输出a加b的值 上面几个例子是使用变量进行运算,python的变量可以分为数字.字符

Python中实现变量赋值传递时的引用和拷贝方法

iamlaosong文 曾经看到这样一个问题,一个字典中的元素是列表,将这个列表元素赋值给一个变量,然后修改这个列表中元素的值,结果发现,字典中那个列表也同样修改了. 那个问题如下: dict = {'a':[1,2,3,4,5],'b':2} x = dict['a'] for i in range(5): x[i] = 0 print(dict['a']) 程序运行结果如下: [0, 0, 0, 0, 0] 这儿涉及到Python赋值到底是引用还是拷贝一份的问题,即赋值时是传值还是传址.上面

图解Python变量与赋值

Python是一门独特的语言,与C语言有很大区别,初学Python很多萌新表示对变量与赋值不理解,学过C的都知道,给变量赋值时,需要先指定数据类型,同时会开辟一块内存区域,用于存储值,例如: int a = 1; a 就是内存空间中的一小块区域,就像是一个大房间里面的一个小盒子,赋值就是把整数1装载到盒子里面. 现在给变量a重新赋值 a = 2; 盒子依然是那个盒子,也就是说内存地址没有变,只是该段内存中的值变了,变成了2. 再来看: int b = a; 当把变量a赋值给另外一个变量b时,相当

Python动态声明变量赋值代码实例

这篇文章主要介绍了Python动态声明变量赋值代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 通过exec().globals()和locals() # 通过exec() for i in range(1, 4): # 第一次循环 i=1 时,会执行字符串中的python语句 ex1 = "exec1",以此类推 exec(f'ex{i} = "exec{i}"') # 通过globals()和locals