Tensorflow2.1 MNIST图像分类实现思路分析

目录
  • 前言
  • 主要思路和实现
    • (1) 加载数据,处理数据
    • (2) 使用 keras 搭建深度学习模型
    • (3) 定义损失函数
    • (4) 配置编译模型
    • (5) 使用训练数据训练模型
    • (6) 使用测试数据评估模型
    • (7) 展示不使用归一化的操作的训练和评估结果

前言

之前工作中主要使用的是 Tensorflow 1.15 版本,但是渐渐跟不上工作中的项目需求了,而且因为 2.x 版本和 1.x 版本差异较大,所以要专门花时间学习一下 2.x 版本,本文作为学习 Tensorflow 2.x 版本的开篇,主要介绍了使用 cpu 版本的 Tensorflow 2.1 搭建深度学习模型,完成对于 MNIST 数据的图片分类的任务。

主要思路和实现

(1) 加载数据,处理数据

这里是要导入 tensorflow 的包,前提是你要提前安装 tensorflow ,我这里为了方便直接使用的是 cpu 版本的 tensorflow==2.1.0 ,如果是为了学习的话,cpu 版本的也够用了,毕竟数据量和模型都不大。

import tensorflow as tf

这里是为了加载 mnist 数据集,mnist 数据集里面就是 0-9 这 10 个数字的图片集,我们要使用深度学习实现一个模型完成对 mnist 数据集进行分类的任务,这个项目相当于 java 中 hello world 。

mnist = tf.keras.datasets.mnist

这里的 (x_train, y_train) 表示的是训练集的图片和标签,(x_test, y_test) 表示的是测试集的图片和标签。

(x_train, y_train), (x_test, y_test) = mnist.load_data()

每张图片是 28*28 个像素点(数字)组成的,而每个像素点(数字)都是 0-255 中的某个数字,我们对其都除 255 ,这样就是相当于对这些图片的像素点值做归一化,这样有利于模型加速收敛,在本项目中执行本操作比不执行本操作最后的准确率高很多,在文末会展示注释本行情况下,模型评估的指标结果,大家可以自行对比差异。

x_train, x_test = x_train / 255.0, x_test / 255.0

(2) 使用 keras 搭建深度学习模型

这里主要是要构建机器学习模型,模型分为以下几层:

  • 第一层要接收图片的输入,每张图片是 28*28 个像素点组成的,所以 input_shape=(28, 28)
  • 第二层是一个输出 128 维度的全连接操作
  • 第三层是要对第二层的输出随机丢弃 20% 的 Dropout 操作,这样有利于模型的泛化

第四层是一个输出 10 维度的全连接操作,也就是预测该图片分别属于这十种类型的概率

 model = tf.keras.models.Sequential([
   tf.keras.layers.Flatten(input_shape=(28, 28)),
   tf.keras.layers.Dense(128, activation='relu'),
   tf.keras.layers.Dropout(0.2),
   tf.keras.layers.Dense(10)
 ])

(3) 定义损失函数

这里主要是定义损失函数,这里的损失函数使用到了 SparseCategoricalCrossentropy ,主要是为了计算标签和预测结果之间的交叉熵损失。

loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)

(4) 配置编译模型

这里主要是配置和编译模型,优化器使用了 adam ,要优化的评价指标选用了准确率 accuracy ,当然了还可以选择其他的优化器和评价指标。

model.compile(optimizer='adam', loss=loss_fn, metrics=['accuracy'])

(5) 使用训练数据训练模型

这里主要使用训练数据的图片和标签来训练模型,将整个训练样本集训练 5 次。

model.fit(x_train, y_train, epochs=5)

训练过程结果输出如下:

Train on 60000 samples
Epoch 1/5
60000/60000 [==============================] - 3s 43us/sample - loss: 0.2949 - accuracy: 0.9144
Epoch 2/5
60000/60000 [==============================] - 2s 40us/sample - loss: 0.1434 - accuracy: 0.9574
Epoch 3/5
60000/60000 [==============================] - 2s 36us/sample - loss: 0.1060 - accuracy: 0.9676
Epoch 4/5
60000/60000 [==============================] - 2s 31us/sample - loss: 0.0891 - accuracy: 0.9721
Epoch 5/5
60000/60000 [==============================] - 2s 29us/sample - loss: 0.0740 - accuracy: 0.9771
10000/10000 - 0s - loss: 0.0744 - accuracy: 0.9777

(6) 使用测试数据评估模型

这里主要是使用测试数据中的图片和标签来评估模型,verbose 可以选为 0、1、2 ,区别主要是结果输出的形式不一样,嫌麻烦可以不设置

model.evaluate(x_test,  y_test, verbose=2)

评估的损失值和准确率如下:

[0.07444974237508141, 0.9777]

(7) 展示不使用归一化的操作的训练和评估结果

在不使用归一化操作的情况下,训练过程输出如下:

Train on 60000 samples
Epoch 1/5
60000/60000 [==============================] - 3s 42us/sample - loss: 2.4383 - accuracy: 0.7449
Epoch 2/5
60000/60000 [==============================] - 2s 40us/sample - loss: 0.5852 - accuracy: 0.8432
Epoch 3/5
60000/60000 [==============================] - 2s 36us/sample - loss: 0.4770 - accuracy: 0.8724
Epoch 4/5
60000/60000 [==============================] - 2s 34us/sample - loss: 0.4069 - accuracy: 0.8950
Epoch 5/5
60000/60000 [==============================] - 2s 32us/sample - loss: 0.3897 - accuracy: 0.8996
10000/10000 - 0s - loss: 0.2898 - accuracy: 0.9285

评估结果输入如下:

[0.2897613683119416, 0.9285]

所以我们通过和上面的进行对比发现,不进行归一化操作,在训练过程中收敛较慢,在相同 epoch 的训练之后,评估的准确率和损失值都不理想,损失值比第(6)步操作的损失值大,准确率比第(6)步操作低 5% 左右。

以上就是Tensorflow2.1 MNIST图像分类实现思路分析的详细内容,更多关于Tensorflow2.1 MNIST图像分类的资料请关注我们其它相关文章!

时间: 2022-11-16

Tensorflow2.1实现文本中情感分类实现解析

目录 前言 实现过程和思路解析 下载影评数据并进行 padding 处理 创建验证集数据 搭建简单的深度学习模型 配置并编译模型 训练模型 评估模型 前言 本文主要是用 cpu 版本的 tensorflow 2.1 搭建深度学习模型,完成对电影评论的情感分类任务. 本次实践的数据来源于IMDB 数据集,里面的包含的是电影的影评,每条影评评论文本分为积极类型或消极类型.数据集总共包含 50000 条影评文本,取该数据集的 25000 条影评数据作为训练集,另外 25000 条作为测试集,训练集与测

TensorFlow卷积神经网络MNIST数据集实现示例

这里使用TensorFlow实现一个简单的卷积神经网络,使用的是MNIST数据集.网络结构为:数据输入层–卷积层1–池化层1–卷积层2–池化层2–全连接层1–全连接层2(输出层),这是一个简单但非常有代表性的卷积神经网络. import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True) print("MNIST ready&q

Tensorflow 2.1完成对MPG回归预测详解

目录 前言 1. 获取 Auto MPG 数据并进行数据的归一化处理 2. 对数据进行处理 搭建深度学习模型 使用 EarlyStoping 完成模型训练 使用测试数据对模型进行评估 使用模型进行预测 展示没有进行归一化操作的训练过程 前言 本文的主要内容是使用 cpu 版本的 tensorflor-2.1 完成对 Auto MPG 数据集的回归预测任务. 本文大纲 获取 Auto MPG 数据 对数据进行处理 搭建深度学习模型.并完成模型的配置和编译 使用 EarlyStoping 完成模型训

TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集

基于MNIST数据集的逻辑回归模型做十分类任务 没有隐含层的Softmax Regression只能直接从图像的像素点推断是哪个数字,而没有特征抽象的过程.多层神经网络依靠隐含层,则可以组合出高阶特征,比如横线.竖线.圆圈等,之后可以将这些高阶特征或者说组件再组合成数字,就能实现精准的匹配和分类. import tensorflow as tf import numpy as np import input_data print('Download and Extract MNIST datas

Tensorflow 2.4加载处理图片的三种方式详解

目录 前言 数据准备 使用内置函数读取并处理磁盘数据 自定义方式读取和处理磁盘数据 从网络上下载数据 前言 本文通过使用 cpu 版本的 tensorflow 2.4 ,介绍三种方式进行加载和预处理图片数据. 这里我们要确保 tensorflow 在 2.4 版本以上 ,python 在 3.8 版本以上,因为版本太低有些内置函数无法使用,然后要提前安装好 pillow 和 tensorflow_datasets ,方便进行后续的数据加载和处理工作. 由于本文不对模型进行质量保证,只介绍数据的加

TensorFlow神经网络创建多层感知机MNIST数据集

前面使用TensorFlow实现一个完整的Softmax Regression,并在MNIST数据及上取得了约92%的正确率. 前文传送门: TensorFlow教程Softmax逻辑回归识别手写数字MNIST数据集 现在建含一个隐层的神经网络模型(多层感知机). import tensorflow as tf import numpy as np import input_data mnist = input_data.read_data_sets('data/', one_hot=True)

使用tensorflow实现VGG网络,训练mnist数据集方式

VGG作为流行的几个模型之一,训练图形数据效果不错,在mnist数据集是常用的入门集数据,VGG层数非常多,如果严格按照规范来实现,并用来训练mnist数据集,会出现各种问题,如,经过16层卷积后,28*28*1的图片几乎无法进行. 先介绍下VGG ILSVRC 2014的第二名是Karen Simonyan和 Andrew Zisserman实现的卷积神经网络,现在称其为VGGNet.它主要的贡献是展示出网络的深度是算法优良性能的关键部分. 他们最好的网络包含了16个卷积/全连接层.网络的结构

tensorflow实现残差网络方式(mnist数据集)

介绍 残差网络是何凯明大神的神作,效果非常好,深度可以达到1000层.但是,其实现起来并没有那末难,在这里以tensorflow作为框架,实现基于mnist数据集上的残差网络,当然只是比较浅层的. 如下图所示: 实线的Connection部分,表示通道相同,如上图的第一个粉色矩形和第三个粉色矩形,都是3x3x64的特征图,由于通道相同,所以采用计算方式为H(x)=F(x)+x 虚线的的Connection部分,表示通道不同,如上图的第一个绿色矩形和第三个绿色矩形,分别是3x3x64和3x3x12

TensorFlow实现MLP多层感知机模型

一.多层感知机简介 Softmax回归可以算是多分类问题logistic回归,它和神经网络的最大区别是没有隐含层.理论上只要隐含节点足够多,即时只有一个隐含层的神经网络也可以拟合任意函数,同时隐含层越多,越容易拟合复杂结构.为了拟合复杂函数需要的隐含节点的数目,基本上随着隐含层的数量增多呈指数下降的趋势,也就是说层数越多,神经网络所需要的隐含节点可以越少.层数越深,概念越抽象,需要背诵的知识点就越少.在实际应用中,深层神经网络会遇到许多困难,如过拟合.参数调试.梯度弥散等. 过拟合是机器学习中的

详解如何从TensorFlow的mnist数据集导出手写体数字图片

在TensorFlow的官方入门课程中,多次用到mnist数据集. mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-ubyte的二进制文件. 如果我们想要知道大名鼎鼎的mnist手写体数字都长什么样子,就需要从mnist数据集中导出手写体数字图片.了解这些手写体的总体形状,也有助于加深我们对TensorFlow入门课程的理解. 下面先给出通过TensorFlow api接口导出mnist手写体数字图片的python代码,再对代

TensorFlow基于MNIST数据集实现车牌识别(初步演示版)

在前几天写的一篇博文<如何从TensorFlow的mnist数据集导出手写体数字图片>中,我们介绍了如何通过TensorFlow将mnist手写体数字集导出到本地保存为bmp文件. 车牌识别在当今社会中广泛存在,其应用场景包括各类交通监控和停车场出入口收费系统,在自动驾驶中也得到一定应用,其原理也不难理解,故很适合作为图像处理+机器学习的入门案例. 现在我们不妨酝酿一个大胆的想法:在TensorFlow中通过卷积神经网络+mnist数字集实现车牌识别. 实际上车牌字符除了数字0-9,还有字母A

由浅入深学习TensorFlow MNIST 数据集

目录 MNIST 数据集介绍 LeNet 模型介绍 卷积 池化 (下采样) 激活函数 (ReLU) LeNet 逐层分析 1. 第一个卷积层 2. 第一个池化层 3. 第二个卷积层 4. 第二个池化层 5. 全连接卷积层 6. 全连接层 7. 全连接层 (输出层) 代码实现 导包 读取 & 查看数据 数据预处理 模型建立 训练模型 保存模型 流程总结 完整代码 MNIST 数据集介绍 MNIST 包含 0~9 的手写数字, 共有 60000 个训练集和 10000 个测试集. 数据的格式为单通道

pytorch神经网络从零开始实现多层感知机

目录 初始化模型参数 激活函数 模型 损失函数 训练 我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机.为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fashion-MNIST图像分类数据集. import torch from torch import nn from d2l import torch as d2l batch_size = 256 train_iter, test_iter = d2l.load_data_fashion_mnis