python基于OpenCV模板匹配识别图片中的数字

前言

本博客主要实现利用OpenCV的模板匹配识别图像中的数字,然后把识别出来的数字输出到txt文件中,如果识别失败则输出“读取失败”。

操作环境:

  • OpenCV - 4.1.0
  • Python 3.8.1

程序目标

单个数字模板:(这些单个模板是我自己直接从图片上截取下来的)

要处理的图片:

终端输出:

文本输出:

思路讲解

代码讲解

首先定义两个会用到的函数

第一个是显示图片的函数,这样的话在显示图片的时候就比较方便了

def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

第二个是图片缩放的函数

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized

先把这个代码贴出来,方便后面单个函数代码的理解。

if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

接下来是第一个主要函数,功能是加载数字模板并进行处理。

这个函数使用到了os模块,所以需要在开头import os

def load_digits():
 # 加载数字模板
 path = numbers_address # 这个地方就是获取当前运行目录 获取函数在主函数里面
 filename = os.listdir(path) # 获取文件夹文件
 for file in filename:
  img = cv2.imread(numbers_address + "\\" + file) # 读取图片
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # 灰度处理
  # 自动阈值二值化 把图片处理成黑底白字
  img_temp = cv2.threshold(img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找数字轮廓
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 获取数字矩形轮廓
  x, y, w, h = cv2.boundingRect(cnt[0])
  # 将单个数字区域进行缩放并存到列表中以备后面使用
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  digits.append(digit_roi)

最后一个函数是程序的重点,实现功能就是识别出数字并输出。

不过这里把这个大函数分开两部分来讲解。

第一部分是对图片进行处理,最终把图片中的数字区域圈出来。

 # 这两个都是核,参数可以改变
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 # 这个就是读取图片的,可以暂时不理解
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 # 对图片进行缩放处理
 img_origin = resize(img_origin, width=300)
 # 灰度图
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 # 高斯滤波 参数可以改变,选择效果最好的就可以
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)、
 # 自动二值化处理,黑底白字
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 # 顶帽操作
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 # sobel操作
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 # 闭操作
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 # 自动二值化
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 # 闭操作
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 # 寻找数字轮廓
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 # 轮廓排序
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 # 下面这个循环是对轮廓进行筛选,只有长宽比例大于2的才可以被添加到列表中
 # 这个比例可以根据具体情况来改变。除此之外,还可以通过轮廓周长和轮廓面积等对轮廓进行筛选
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))

部分步骤的效果图:

可以看到在进行完最后一次闭操作后,一串数字全部变成白色区域,这样再进行轮廓检测就可以框出每一行数字的大致范围,这样就可以缩小数字处理的范围,可以在这些具体的区域内部对单个数字进行处理。

轮廓效果:

在这样进行以上步骤之后,就可以确定一行数字的范围了,下面就进行轮廓筛选把符合条件的轮廓存入列表。

注意:在代码中使用了(cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")

这个函数的使用需要导入imutils,这个模块具体使用方法可以浏览我的另一篇博客OpenCV学习笔记

函数的最后一部分就是对每个数字轮廓进行分割,取出单个数字的区域然后进行模板匹配。

for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  # 下面两个判断主要是防止出现越界的情况发生,如果发生的话图片读取会出错
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  # 选择图片兴趣区域
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找所有轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列轮廓
  # 这样排列的好处是,正常情况下可以确定逗号的位置方便后面删除逗号
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  # cnts是元组,需要先转换成列表,因为后面会对元素进行删除处理
  cnts = list(cnts)
  flag = 0
  # 判断轮廓数量是否有9个
  if len(cnts) == 9:
   # 删除逗号位置
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   # 可以在转成元组
   cnts = tuple(cnts)
   # 存放单个数字的矩形区域
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   # 对数字区域进行处理,把尺寸缩放到与数字模板相同
   # 对其进行简单处理,方便与模板匹配,增加匹配率
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    # 高斯滤波
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    # 二值化
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    # 用于存放匹配率
    source = []
    # 遍历数字模板
    for digitROI in digits:
     # 进行模板匹配
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    # 这个需要仔细理解 这个就是把0-9数字中匹配度最高的数字存放到列表中
    digit_out.append(str(source.index(max(source))))
   # 打印最终输出值
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  # 将数字输出到txt文本中
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')

注意理解:digit_out.append(str(source.index(max(source))))

这个是很重要的,列表source存放模板匹配的每个数字的匹配率,求出其中最大值的索引值,因为数字模板是按照0-9排列的,索引source的匹配率也是按照0-9排列的,所以每个元素的索引值就与相匹配的数字相同。这样的话,取得最大值的索引值就相当于取到了匹配率最高的数字。

完整代码

from imutils import contours
import cv2
import os

def cv_show(name, img):
 cv2.imshow(name, img)
 cv2.waitKey(0)
 cv2.destroyAllWindows()

def resize(image, width=None, height=None, inter=cv2.INTER_AREA):
 dim = None
 (h, w) = image.shape[:2]
 if width is None and height is None:
  return image
 if width is None:
  r = height / float(h)
  dim = (int(w * r), height)
 else:
  r = width / float(w)
  dim = (width, int(h * r))
 resized = cv2.resize(image, dim, interpolation=inter)
 return resized

def load_digits():
 # 加载数字模板
 path = numbers_address
 filename = os.listdir(path)
 for file in filename:
  # print(file)
  img = cv2.imread(
   numbers_address + "\\" + file)
  img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
  img_temp = cv2.threshold(
   img_gray, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  cnt = cv2.findContours(img_temp, cv2.RETR_EXTERNAL,
        cv2.CHAIN_APPROX_NONE)[0]
  x, y, w, h = cv2.boundingRect(cnt[0])
  digit_roi = cv2.resize(img_temp[y:y+h, x:x+w], (57, 88))
  # 将数字模板存到列表中
  digits.append(digit_roi)

def demo(index):
 rectKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (25, 25))
 sqKernel = cv2.getStructuringElement(cv2.MORPH_RECT, (5, 5))
 target_path = now_dir + "\\" + "demo_" + str(index) + ".png"
 img_origin = cv2.imread(target_path)
 img_origin = resize(img_origin, width=300)
 img_gray = cv2.cvtColor(img_origin, cv2.COLOR_BGR2GRAY)
 gaussian = cv2.GaussianBlur(img_gray, (5, 5), 1)
 img_temp = cv2.threshold(
  gaussian, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
 img_top = cv2.morphologyEx(img_temp, cv2.MORPH_TOPHAT, rectKernel)
 img_sobel_x = cv2.Sobel(img_top, cv2.CV_64F, 1, 0, ksize=7)
 img_sobel_x = cv2.convertScaleAbs(img_sobel_x)
 img_sobel_y = cv2.Sobel(img_top, cv2.CV_64F, 0, 1, ksize=7)
 img_sobel_y = cv2.convertScaleAbs(img_sobel_y)
 img_sobel_xy = cv2.addWeighted(img_sobel_x, 1, img_sobel_y, 1, 0)
 img_closed = cv2.morphologyEx(img_sobel_xy, cv2.MORPH_CLOSE, rectKernel)
 thresh = cv2.threshold(
  img_closed, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)[1]
 img_closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, sqKernel)
 cnts = cv2.findContours(
  img_closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
 (cnts, boundingBoxes) = contours.sort_contours(cnts, "top-to-bottom")
 draw_img = img_origin.copy()
 draw_img = cv2.drawContours(draw_img, cnts, -1, (0, 0, 255), 1)
 cv_show("666", draw_img)

 # 存放正确数字序列(包含逗号)的轮廓,即过滤掉不需要的轮廓
 right_loc = []
 for c in cnts:
  x, y, w, h = cv2.boundingRect(c)
  ar = w/float(h)
  if ar > 2:
   right_loc.append((x, y, w, h))
 for (gx, gy, gw, gh) in right_loc:
  # 用于存放识别到的数字
  digit_out = []
  if (gy-10 < 0):
   now_gy = gy
  else:
   now_gy = gy-10
  if (gx - 10 < 0):
   now_gx = gx
  else:
   now_gx = gx-10
  img_digit = gaussian[now_gy:gy+gh+10, now_gx:gx+gw+10]
  # 二值化处理
  img_thresh = cv2.threshold(
   img_digit, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
  # 寻找轮廓 找出每个数字的轮廓(包含逗号) 正确的话应该有9个轮廓
  digitCnts = cv2.findContours(
   img_thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]
  # 从左到右排列
  (cnts, boundingBoxes) = contours.sort_contours(digitCnts, "left-to-right")
  cnts = list(cnts)
  flag = 0
  if len(cnts) == 9:
   del cnts[1]
   del cnts[2]
   del cnts[3]
   del cnts[4]
   cnts = tuple(cnts)
   num_roi = []
   for c in cnts:
    x, y, w, h = cv2.boundingRect(c)
    num_roi.append((x, y, w, h))
   for (rx, ry, rw, rh) in num_roi:
    roi = img_digit[ry:ry+rh, rx:rx+rw]
    roi = cv2.resize(roi, (57, 88))
    roi = cv2.GaussianBlur(roi, (5, 5), 1)
    roi = cv2.threshold(
     roi, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
    source = []
    for digitROI in digits:
     res = cv2.matchTemplate(
      roi, digitROI, cv2.TM_CCOEFF_NORMED)
     max_val = cv2.minMaxLoc(res)[1]
     source.append(max_val)
    digit_out.append(str(source.index(max(source))))
   cv2.rectangle(img_origin, (gx-5, gy-5),
       (gx+gw+5, gy+gh+5), (0, 0, 255), 1)
   print(digit_out)
  else:
   print("读取失败")
   flag = 1
  t = ''
  with open(now_dir + "\\temp.txt", 'a+') as q:
   if flag == 0:
    for content in digit_out:
     t = t + str(content) + " "
    q.write(t.strip(" "))
    q.write('\n')
    t = ''
   else:
    q.write("读取失败")
    q.write('\n')

if __name__ == "__main__":
 # 存放数字模板列表
 digits = []
 # 当前运行目录
 now_dir = os.getcwd()
 print("当前运行目录:" + now_dir)
 numbers_address = now_dir + "\\numbers"
 load_digits()
 times = input("请输入程序运行次数:")
 for i in range(1, int(times) + 1):
  demo(i)
 print("输出成功,请检查本地temp.txt文件")
 cv2.waitKey(0)
 cv2.destroyAllWindows()
 while True:
  if input("输入小写‘q'并回车退出") == 'q':
   break

整个文件下载地址:https://wwe.lanzous.com/iLSDunf850b

注意:如果想同时识别多个图片话,需要将图片统一改名为“demo_ + 数字序号.png” 例如:demo_1.png demo_2.png 同时在运行代码时输入图片个数即可。

总结

这个程序代码相对来说不算复杂,主要是对图像的一些基础处理需要注意。因为不同的图像想要识别成功需要进行不同程度的基础处理,所以在做的时候可以多输出几张图片检查一下那一步效果不太好并及时进行修改调整,这样才能达到最终比较好的效果。

以上就是python基于OpenCV模板匹配识别图片中的数字的详细内容,更多关于python 识别图片中的数字的资料请关注我们其它相关文章!

时间: 2021-03-30

python中的opencv和PIL(pillow)转化操作

opencv > pil import cv2 from PIL import Image img = cv2.imread("test.png") image = Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB)) pil > opencv import cv2 from PIL import Image image = Image.open("test.png") img = cv2.cvtCol

OpenCV+Python几何变换的实现示例

几何变换 图像的几何变换是指将一幅图像映射到另一幅图像内.有缩放.翻转.仿射变换.透视.重映射等操作. 1 缩放 使用cv2.resize()函数实现对图像的缩放,但要注意cv2.resize()函数内的dsize参数与原图像的行列属性是相反的,也就是:目标图像的行数是原始图像的列数,目标图像的列数是原始图像的行数. 下面举例说明cv2.resize()函数的用法: import cv2 img=cv2.imread('E:/python_opencv/tupian.jpg') rows,col

python OpenCV学习笔记

图像翻转 使用Python的一个包,imutils.使用下面的指令可以安装. pip install imutils imutils包的Github地址:https://github.com/jrosebr1/imutils CSDN镜像:https://codechina.csdn.net/mirrors/jrosebr1/imutils 可以在上面这个地址里面学习更多的使用方式. import cv2 import imutils ''' imutils.rotate 第一个参数是翻转的图像

python opencv实现图像配准与比较

本文实例为大家分享了python opencv实现图像配准与比较的具体代码,供大家参考,具体内容如下 代码 from skimage import io import cv2 as cv import numpy as np import matplotlib.pyplot as plt img_path1 = '2_HE_maxarea.png' img_path2 = '2_IHC_maxarea.png' img1 = io.imread(img_path1) img2 = io.imre

Python+Opencv实现数字识别的示例代码

一.什么是数字识别?   所谓的数字识别,就是使用算法自动识别出图片中的数字.具体的效果如下图所示: 上图展示了算法的处理效果,算法能够自动的识别到LCD屏幕上面的数字,这在现实场景中具有很大的实际应用价值.下面我们将对它的实现细节进行详细解析. 二.如何实现数字识别?   对于数字识别这个任务而言,它并不是一个新的研究方向,很久之前就有很多的学者们在关注这个问题,并提出了一些可行的解决方案,本小节我们将对这些方案进行简单的总结. 方案一:使用现成的OCR技术. OCR,即文字识别,它是一个比较

Python OpenCV高斯金字塔与拉普拉斯金字塔的实现

基础知识铺垫 学习图像金字塔,发现网上的资料比较多,检索起来比较轻松. 图像金字塔是一张图像多尺度的表达,或者可以理解成一张图像不同分辨率展示. 金字塔越底层的图片,像素越高,越向上,像素逐步降低,分辨率逐步降低. 高斯金字塔 我们依旧不对概念做过多解释,第一遍学习应用,应用,毕竟 365 天的周期,时间长,后面补充理论知识. 高斯金字塔用于向下采样,同时它也是最基本的图像塔. 在互联网检索原理,得到最简单的说明如下: 将图像的最底层(高斯金字塔的第 0 层),例如高斯核(5x5)对其进行卷积操

Python OpenCV 基于图像边缘提取的轮廓发现函数

基础知识铺垫 在图像中,轮廓可以简单的理解为连接具有相同颜色的所有连续点(边界)的曲线,轮廓可用于形状分析和对象检测.识别等领域. 轮廓发现的原理:先通过阈值分割提取目标物体,再通过边缘检测提取目标物体轮廓. 一个轮廓就是一系列的点(像素),这些点构成了一个有序的点集合. 使用 cv2.findContours 函数可以用来检测图像的边缘. 函数原型说明 contours, hierarchy = cv2.findContours(image, mode, method[, contours[,

Python opencv操作深入详解

直接读取图片 def display_img(file="p.jpeg"): img = cv.imread(file) print (img.shape) cv.imshow('image',img) cv.waitKey(0) cv.destroyAllWindows() 读取灰度图片 def display_gray_img(file="p.jpeg"): img = cv.imread(file,cv.IMREAD_GRAYSCALE) print (img

python+opencv实现车道线检测

python+opencv车道线检测(简易实现),供大家参考,具体内容如下 技术栈:python+opencv 实现思路: 1.canny边缘检测获取图中的边缘信息: 2.霍夫变换寻找图中直线: 3.绘制梯形感兴趣区域获得车前范围: 4.得到并绘制车道线: 效果展示: 代码实现: import cv2 import numpy as np def canny(): gray = cv2.cvtColor(lane_image, cv2.COLOR_RGB2GRAY) #高斯滤波 blur = c

python利用opencv实现颜色检测

本文实例为大家分享了python利用opencv实现颜色检测的具体代码,供大家参考,具体内容如下 需要实现倒车辅助标记检测的功能,倒车辅助标记颜色已经确定了,所以不需要使用深度学习的方法,那样成本太高了,直接可以使用颜色检测的方法. 1.首先需要确定待检测目标的HSV值 import cv2 img = cv2.imread('l3.png') gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) hsv = cv2.cvtColor(img, cv2.COL

利用python打开摄像头及颜色检测方法

最近两周由于忙于个人项目,一直未发言了,实在是太荒凉了....,上周由于项目,见到Python的应用极为广泛,用起来也特别顺手,于是小编也开始着手学习Python,-下面我就汇报下今天的学习成果吧 小编运行环境unbuntu 14.0.4 首先我们先安装一下Python呗,我用的2.7,其实特别简单,一行指令就OK sudo apt-get install python-dev 一般安装系统的时候其实python已经自带了,这步基本可以不用做,OK,我们继续往下走吧,安装python-openc

python利用Opencv实现人脸识别功能

本文实例为大家分享了python利用Opencv实现人脸识别功能的具体代码,供大家参考,具体内容如下 首先:需要在在自己本地安装opencv具体步骤可以问度娘 如果从事于开发中的话建议用第三方的人脸识别(推荐阿里) 1.视频流中进行人脸识别 # -*- coding: utf-8 -*- import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(w

Python基于OpenCV实现人脸检测并保存

本文实例为大家分享了Python基于OpenCV实现人脸检测,并保存的具体代码,供大家参考,具体内容如下 安装opencv 如果安装了pip的话,Opencv的在windows的安装可以直接通过cmd命令pip install opencv-python(只需要主要模块),也可以输入命令pip install opencv-contrib-python(如果需要main模块和contrib模块) 详情可以点击此处 导入opencv import cv2 所有包都包含haarcascade文件.这

Python 利用OpenCV给照片换底色的示例代码

OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于BSD许可(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效--由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算法.相比于PIL库来说OpenCV更加强大, 可以做更多更复杂的应用,比如人脸识别等. 1. 读入并显示图片 im

Python 使用Opencv实现目标检测与识别的示例代码

在上章节讲述到图像特征检测与匹配 ,本章节是讲述目标检测与识别.后者是在前者的基础上进一步完善. 在本章中,我们使用HOG算法,HOG和SIFT.SURF同属一种类型的描述符.功能代码如下: import cv2 def is_inside(o, i): ox, oy, ow, oh = o ix, iy, iw, ih = i # 如果符合条件,返回True,否则返回False return ox > ix and oy > iy and ox + ow < ix + iw and o

python结合opencv实现人脸检测与跟踪

模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

C++利用opencv实现人脸检测

小编所有的帖子都是基于unbuntu系统的,当然稍作修改同样试用于windows的,经过小编的绞尽脑汁,把刚刚发的那篇python 实现人脸和眼睛的检测的程序用C++ 实现了,当然,也参考了不少大神的博客,下面我们就一起来看看: Linux系统下安装opencv我就再啰嗦一次,防止有些人没有安装没调试出来喷小编的程序是个坑, sudo apt-get install libcv-dev sudo apt-get install libopencv-dev 看看你的usr/share/opencv

python利用opencv实现SIFT特征提取与匹配

本文实例为大家分享了利用opencv实现SIFT特征提取与匹配的具体代码,供大家参考,具体内容如下 1.SIFT 1.1.sift的定义 SIFT,即尺度不变特征变换(Scale-invariant feature transform,SIFT),是用于图像处理领域的一种描述.这种描述具有尺度不变性,可在图像中检测出关键点,是一种局部特征描述子. 1.2.sift算法介绍 SIFT由David Lowe在1999年提出,在2004年加以完善 .SIFT在数字图像的特征描述方面当之无愧可称之为最红

python利用OpenCV2实现人脸检测

最近,带领我的学生进行一个URTP项目设计,需要进行人脸识别.由于现在的OpenCV已经到了2.X版本,因此就不想用原来的1.X版本的代码,而网上存在的代码都是1.X版本的代码,尝试自己写一段2.X版本的代码,反复查阅资料,今天终于测试成功(很明显2.X版本的代码要比1.X的代码更简单),供大家好参考,代码如下:(2017年5月12日在python3.6.1下做一简单的修改) import cv2 import numpy as np cv2.namedWindow("test")#命

基于openCV实现人脸检测

openCV的人脸识别主要通过Haar分类器实现,当然,这是在已有训练数据的基础上.openCV安装在 opencv/opencv/sources/data/haarcascades_cuda(或haarcascades)中存在预先训练好的物体检测器(xml格式),包括正脸.侧脸.眼睛.微笑.上半身.下半身.全身等. openCV的的Haar分类器是一个监督分类器,首先对图像进行直方图均衡化并归一化到同样大小,然后标记里面是否包含要监测的物体.它首先由Paul Viola和Michael Jon