eclipse实现可认证的DH密钥交换协议

可认证的DH密钥交换协议,供大家参考,具体内容如下

一、实验目的

通过使用密码学库实现可认证的DH密钥交换协议(简化STS协议),能够编写简单的实验代码进行正确的协议实现和验证。

二、实验要求

1、熟悉DH密钥交换算法基本原理;
2、理解原始DH密钥交换算法存在的中间人攻击;
3、理解简化STS协议抗中间人攻击的原理。
4、掌握使用java编写实验代码进行正确的简化STS协议实现和验证。

三、 开发环境

JDK 1.7,Java开发环境(本实验采用Windows+eclipse作为实验环境),要求参与实验的同学按照对称加密提供的方法,提前安装好JDK。

四、实验原理

通过使用密码学库实现可认证的DH密钥交换协议(简化STS协议),能够编写简单的实验代码进行正确的协议实现和验证。

代码段:

AuthDHKeyAgree

import java.math.BigInteger;
import java.util.Random;

public class AuthDHKeyAgree {
 private static final int securityParam = 1023;
 public static BigInteger p;
 public static BigInteger q;
 public static BigInteger g;

 //生成安全素数p,p=2q+1,q为一个1023 bits的大素数
 public static void safePGen() {
 BigInteger one = new BigInteger("1",10);
 BigInteger two = new BigInteger("2",10);
 do {
 p = new BigInteger("0",10);
 q = new BigInteger(securityParam, 100, new Random());
 p = p.add(q.multiply(two).add(one));
 }while( p.isProbablePrime(100) == false );
 }

 //选取随机生成元g,通过随机选择[2,p-2]之间的数g,然后判断g^q mod p是否等于1,如果不等于1,则g为生成元
 public static void generatorGGen() {
 BigInteger one = new BigInteger("1",10);
 BigInteger two = new BigInteger("2",10);
 BigInteger result;
 do {
 g = new BigInteger(securityParam, new Random());
 g = g.mod(p.subtract(one));
 result = g.modPow(q, p);
 }while( g.compareTo(two) < 0 || result.compareTo(one) == 0 );
 }

 public static void main(String[] args) {
 System.out.println("系统初始化,生成安全素数p,选取随机生成元g...");
 safePGen();
 System.out.println("p: "+p.toString(16));
 System.out.println("q: "+q.toString(16));
 generatorGGen();
 System.out.println("g: "+g.toString(16));

 //Alice选择随机秘密值 0<=r1<=p-1
 BigInteger r1 = new BigInteger(securityParam, new Random());
 BigInteger A;
 r1 = r1.mod(p);
 //Alice计算g^r1 mod p
 A = g.modPow(r1, p);
 //Bob选择随机秘密值0<=r2<=p-1
 BigInteger r2 = new BigInteger(securityParam, new Random());
 BigInteger B;
 //Bob计算g^r2 mod p
 B = g.modPow(r2, p);
 //Bob初始化一个RSA签名算法对象
 RSASignatureAlgorithm BobRSA = new RSASignatureAlgorithm();
 BobRSA.initKeys();
 byte[] BobM = (A.toString()+B.toString()+"Alice"+"Bob").getBytes();
 //Bob生成签名
 BigInteger BobSig = BobRSA.signature(BobM);
 //Alice验证签名
 BobM = (A.toString()+B.toString()+"Alice"+"Bob").getBytes();
 boolean result = BobRSA.verify(BobM, BobSig);
 if( result == true ) System.out.println("Alice验证签名通过。");
 else System.out.println("Alice验证签名不通过。");
 //Alice计算会话密钥
 BigInteger sessionKey = (A.multiply(B)).mod(p);
 System.out.println("Alice计算得到的会话密钥为:"+sessionKey.toString(16));
 //Alice初始化一个RSA签名算法对象
 RSASignatureAlgorithm AliceRSA = new RSASignatureAlgorithm();
 AliceRSA.initKeys();
 byte[] AliceM = (A.toString()+B.toString()+"Alice"+"Bob").getBytes();
 //Alice生成签名
 BigInteger AliceSig = AliceRSA.signature(AliceM);
 //Bob验证签名
 AliceM = (A.toString()+B.toString()+"Alice"+"Bob").getBytes();
 result = AliceRSA.verify(AliceM, AliceSig);
 if ( result == true ) System.out.println("Bob验证签名通过。");
 else System.out.println("Bob验证签名不通过");
 //Bob计算会话密钥
 sessionKey = (B.multiply(A)).mod(p);
 System.out.println("Bob计算得到的会话密钥为:"+sessionKey.toString(16));
 }

}

RSASignatureAlgorithm

import java.math.BigInteger;
import java.math.BigInteger;
import java.security.MessageDigest;
import java.security.NoSuchAlgorithmException;
import java.util.Random;

public class RSASignatureAlgorithm {
 BigInteger n;
 BigInteger e;
 BigInteger d;
 public BigInteger __hash(byte m[]) {
 MessageDigest md;
 try {
 md = MessageDigest.getInstance("SHA-256");
 md.update(m);
 byte b[] = new byte[33];
 System.arraycopy(md.digest(), 0, b, 1, 32);
 return new BigInteger(b);
 } catch (NoSuchAlgorithmException e) {
 System.out.println("this cannot happen.");
 }
 return null;
 }
 public void initKeys() {
 BigInteger p = new BigInteger(1024, 500, new Random());
 BigInteger q = new BigInteger(1024, 500, new Random());
 assert(p.compareTo(q) != 0);
 n = p.multiply(q);
 BigInteger fi_n = p.subtract(BigInteger.ONE)
 .multiply(q.subtract(BigInteger.ONE));
 e = new BigInteger(512, 100, new Random());
 d = e.modInverse(fi_n);

 System.out.println("n : " + n.toString(16));
 System.out.println("e : " + e.toString(16));
 System.out.println("d : " + d.toString(16));
 }
 public BigInteger signature(byte m[]) {
 BigInteger s = __hash(m).modPow(d, n);
 System.out.println("s : " + s);
 return s;
 }
 public boolean verify(byte m[], BigInteger s) {
 BigInteger left = __hash(m).mod(n);
 BigInteger right = s.modPow(e, n);
 return left.compareTo(right) == 0;
 }
}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2020-06-22

Java使用DSA密钥对生成XML签名的方法

本文实例讲述了Java使用DSA密钥对生成XML签名的方法.分享给大家供大家参考.具体实现方法如下: MainClass.java代码如下: 复制代码 代码如下: import java.security.KeyPair; import java.security.KeyPairGenerator; import java.security.SecureRandom; import java.util.Collections; import javax.xml.crypto.dsig.Canon

java密钥交换算法DH定义与应用实例分析

本文实例讲述了java密钥交换算法DH定义与应用.分享给大家供大家参考,具体如下: 一 对称加密缺点 密钥传递过程复杂,这是对称加密带来的困扰. 二 DH密钥交换算法特点 构建本地密钥 双方密钥一致 三 DH相关参数 四 DH算法实现过程 1.初始化发送方的密钥(KeyPairGenerator.KeyPair.PublicKey) 2.初始化接受方的密钥(KeyFactory.X509EncodedKeySpec.DHPublicKey.DHParameterSpec.KeyPairGener

java中以DES的方式实现对称加密并提供密钥的实例

java中以DES的方式实现对称加密并提供密钥的实例 加密原理 DES 使用一个 56 位的密钥以及附加的 8 位奇偶校验位,产生最大 64 位的分组大小.这是一个迭代的分组密码,使用称为 Feistel 的技术,其中将加密的文本块分成两半.使用子密钥对其中一半应用循环功能,然后将输出与另一半进行"异或"运算:接着交换这两半,这一过程会继续下去,但最后一个循环不交换.DES 使用 16 个循环,使用异或,置换,代换,移位操作四种基本运算. 注释都在代码里了,干了: import jav

Java中多态性的实现方式

什么是多态 面向对象的三大特性:封装.继承.多态.从一定角度来看,封装和继承几乎都是为多态而准备的.这是我们最后一个概念,也是最重要的知识点. 多态的定义:指允许不同类的对象对同一消息做出响应.即同一消息可以根据发送对象的不同而采用多种不同的行为方式.(发送消息就是函数调用) 实现多态的技术称为:动态绑定(dynamic binding),是指在执行期间判断所引用对象的实际类型,根据其实际的类型调用其相应的方法. 多态的作用:消除类型之间的耦合关系. 现实中,关于多态的例子不胜枚举.比方说按下

Java中随机数的产生方式与原理详解

Java中随机数的产生方式与原理 查阅随机数相关资料,特做整理 首先说一下java中产生随机数的几种方式 在j2se中我们可以使用Math.random()方法来产生一个随机数,这个产生的随机数是0-1之间的一个double,我们可以把他乘以100,他就是个100以内的随机数字,这个在j2me中没有. 在java.util这个包里面提供了一个Random的类,我们可以新建一个Random的对象来产生随机数,他可以生产随机整数.随机float.随机double.随机long,这个也是我们在j2me

Java中map内部存储方式解析

Map,即映射,也称为 键值对,有一个 Key, 一个 Value . 比如 Groovy 语言中,  def  map = ['name' : 'liudehua', 'age' : 50 ] ,则 map[ 'name' ]  的值是 'liudehua'. 那么 Map 内部存储是怎么实现的呢?   下面慢慢讲解. 一. 使用 拉链式存储 这个以 Java 中的 HashMap 为例进行讲解.   HashMap 的内部有个数组 Entry[]  table, 这个数组就是存放数据的. E

JAVA中单元测试的常用方式(小结)

什么是单元测试 单元测试(英语:Unit Testing)又称为模块测试, 是针对程序模块(软件设计的最小单位)来进行正确性检验的测试工作.程序单元是应用的最小可测试部件.在过程化编程中,一个单元就是单个程序.函数.过程等:对于面向对象编程,最小单元就是方法,包括基类(超类).抽象类.或者派生类(子类)中的方法. 通常来说,程序员每修改一次程序就会进行最少一次单元测试,在编写程序的过程中前后很可能要进行多次单元测试,以证实程序达到软件规格书要求的工作目标,没有程序错误:虽然单元测试不是什么必须的

java中使用DES加密解密实例

在前面介绍了一些加密解密类的使用,这里综合起来做一个简单的测试,代码如下: MainActivity: 复制代码 代码如下: package com.home.testdes; import android.os.Bundle;import android.util.Log;import android.app.Activity; public class MainActivity extends Activity { @Override protected void onCreate(Bund

深入剖析Java中的各种异常处理方式

1. 调试追踪代码: public static void enterTryMethod() { System.out.println("enter after try field"); } public static void enterExceptionMethod() { System.out.println("enter catch field"); } public static void enterFinallyMethod() { System.out

Java中对象的序列化方式克隆详解

Java 序列化技术可以使你将一个对象的状态写入一个Byte 流里,并且可以从其它地方把该Byte 流里的数据读出来,重新构造一个相同的对象. 简述: 用字节流的方式,复制Java对象 代码: 流克隆复制函数 public static Object deepClone(Object obj){ if(obj == null){ return null; } try { ByteArrayOutputStream byteOut = new ByteArrayOutputStream(); Ob

浅析java中Integer传参方式的问题

Java本身都是值传递式的调用,对于对象传递的是地址值.给地址值重新赋值等于重新指向,不会影响外层.而且这里Integer对象也有特殊性.其实现上可能类似 复制代码 代码如下: class Integer{final int value; //一旦赋值,就不能改变.} 这就出现:调用时传的地址值不能改变外层+对象本身又不能改变.导致这个值没法改变 解决方案很多1.java风格就是,单个值用返回值.return i; 外面再i=foo();赋值:多个值用数组或对象.2.传递自己的封装类.class

Java中动态地改变数组长度及数组转Map的代码实例分享

动态改变数组的长度 /** * Reallocates an array with a new size, and copies the contents * * of the old array to the new array. * * @param oldArray the old array, to be reallocated. * * @param newSize the new array size. * * @return A new array with the same co