pandas数据标准化处理

  • 使用pandas模块实现数据的标准化操作

    如下所示: 3σ 原则 (u-3*σ ,u+3*σ ) 离差标准化 (x-min)/(max-min) 标准差标准化 (x-u)/σ 小数定标标准化 x/10**k k=np.ceil(log10(m ...

  • python数据分析数据标准化及离散化详解

    本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下 标准化 1.离差标准化 是对原始数据的线性变换,使结果映射到[0,1]区间.方便数据的处理.消除单位影响及变 ...

  • python数据预处理之数据标准化的几种处理方式

    何为标准化: 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析.数据标准化也就是统计数据的指数化.数据标准化处理主要包括数据同趋化处理和无量纲化 ...

  • Python3 常用数据标准化方法详解

    数据标准化是机器学习.数据挖掘中常用的一种方法.包括我自己在做深度学习方面的研究时,数据标准化是最基本的一个步骤. 数据标准化主要是应对特征向量中数据很分散的情况,防止小数据被大数据(绝对值)吞并的情 ...

  • Python遍历pandas数据方法总结

    前言 Pandas是python的一个数据分析包,提供了大量的快速便捷处理数据的函数和方法.其中Pandas定义了Series 和 DataFrame两种数据类型,这使数据操作变得更简单.Series ...

  • pandas数据预处理之dataframe的groupby操作方法

    在数据预处理过程中可能会遇到这样的问题,如下图:数据中某一个key有多组数据,如何分别对每个key进行相同的运算? dataframe里面给出了一个group by的一个操作,对于"grou ...

  • pandas数据分组和聚合操作方法

    <Python for Data Analysis> GroupBy 分组运算:split-apply-combine(拆分-应用-合并) DataFrame可以在其行(axis=0)或列 ...

  • 基于pandas数据样本行列选取的方法

    注:以下代码是基于python3.5.0编写的 import pandas food_info = pandas.read_csv("food_info.csv") # ----- ...

  • pandas数据框,统计某列数据对应的个数方法

    现在要解决的问题如下: 我们有一个数据的表 第7列有许多数字,并且是用逗号分隔的,数字又有一个对应的关系: 我们要得到第7列对应关系的统计,就是每一行的第7列a有多少个,b有多少个 好了,我给的解决方 ...

  • Pandas 数据框增、删、改、查、去重、抽样基本操作方法

    总括 pandas的索引函数主要有三种: loc 标签索引,行和列的名称 iloc 整型索引(绝对位置索引),绝对意义上的几行几列,起始索引为0 ix 是 iloc 和 loc的合体 at是loc的快 ...

  • pandas 数据实现行间计算的方法

    如下所示: ###方法1:用shift函数,不用通过循环 import pandas as pd import numpy as np import matplotlib as plt df = pd ...

  • python用pandas数据加载、存储与文件格式的实例

    数据加载.存储与文件格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数.其中read_csv和read_talbe用得最多 pandas中的解析函数: 函数 说明 read ...

  • Pandas数据离散化原理及实例解析

    这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 为什么要离散化 连续属性离散化的目的是为了简化 ...

  • pandas 数据归一化以及行删除例程的方法

    如下所示: #coding:utf8 import pandas as pd import numpy as np from pandas import Series,DataFrame # 如果有i ...

  • 使用sklearn进行对数据标准化、归一化以及将数据还原的方法

    在对模型训练时,为了让模型尽快收敛,一件常做的事情就是对数据进行预处理. 这里通过使用sklearn.preprocess模块进行处理. 一.标准化和归一化的区别 归一化其实就是标准化的一种方式,只不 ...

  • 对pandas数据判断是否为NaN值的方法详解

    实际项目中有这样的需求,将某一列的值,映射成类别型的数据,这个时候,需要我们将范围等频切分,或者等距切分. 具体的做法可以先看某一些特征的具体分布情况,然后我们选择合适的阈值进行分割. def age ...

  • pandas数据拼接的实现示例

    一 前言 pandas数据拼接有可能会用到,比如出现重复数据,需要合并两份数据的交集,并集就是个不错的选择,知识追寻者本着技多不压身的态度蛮学习了一下下: 二 数据拼接 在进行学习数据转换之前,先学习 ...

  • pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

    pandas数据选取:df[] df.loc[] df.iloc[] df.ix[] df.at[] df.iat[]

  • pandas 数据类型转换的实现

    数据处理过程的数据类型 当利用pandas进行数据处理的时候,经常会遇到数据类型的问题,当拿到数据的时候,首先需要确定拿到的是正确类型的数据,一般通过数据类型的转化,这篇文章就介绍pandas里面的数 ...

  • pandas数据分组groupby()和统计函数agg()的使用

    数据分组 使用 groupby() 方法进行分组 group.size()查看分组后每组的数量 group.groups 查看分组情况 group.get_group('名字') 根据分组后的名字选择 ...

  • Python基础之pandas数据合并

    一.concat concat函数是在pandas底下的方法,可以将数据根据不同的轴作简单的融合 pd.concat(objs, axis=0, join='outer', join_axes=Non ...

  • 2024-03-20

    随机推荐