pytorch模型训练过后 评估结果和训练结果不同
-
解决Pytorch在测试与训练过程中的验证结果不一致问题
引言 今天在使用Pytorch导入此前保存的模型进行测试,在过程中发现输出的结果与验证结果差距甚大,经过排查后发现是forward与eval()顺序问题. 现象 此前的错误代码是 input_cpu ...
-
pytorch_pretrained_bert如何将tensorflow模型转化为pytorch模型
pytorch_pretrained_bert将tensorflow模型转化为pytorch模型 BERT仓库里的模型是TensorFlow版本的,需要进行相应的转换才能在pytorch中使用 在Go ...
-
加速 PyTorch 模型训练的 9 个技巧(收藏)
目录 Pytorch-Lightning 1.DataLoaders 2.DataLoaders中的workers的数量 3.Batchsize 4.梯度累加 5.保留的计算图 6.单个GPU训练 7 ...
-
pytorch 在网络中添加可训练参数,修改预训练权重文件的方法
实践中,针对不同的任务需求,我们经常会在现成的网络结构上做一定的修改来实现特定的目的. 假如我们现在有一个简单的两层感知机网络: # -*- coding: utf-8 -*- import torc ...
-
pytorch载入预训练模型后,实现训练指定层
pytorch载入预训练模型后,实现训练指定层
-
Pytorch根据layers的name冻结训练方式
使用model.named_parameters()可以轻松搞定, model.cuda() # ######################################## Froze some ...
-
pytorch finetuning 自己的图片进行训练操作
一.pytorch finetuning 自己的图片进行训练 这种读取图片的方式用的是torch自带的 ImageFolder,读取的文件夹必须在一个大的子文件下,按类别归好类. 就像我现在要区分三个 ...
-
将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU ...
-
把vgg-face.mat权重迁移到pytorch模型示例
最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face.mat转到py ...
-
pytorch 模型的train模式与eval模式实例
原因 对于一些含有batch normalization或者是Dropout层的模型来说,训练时的froward和验证时的forward有计算上是不同的,因此在前向传递过程中需要指定模型是在训练还是在 ...
-
可视化pytorch 模型中不同BN层的running mean曲线实例
加载模型字典 逐一判断每一层,如果该层是bn 的 running mean,就取出参数并取平均作为该层的代表 对保存的每个BN层的数值进行曲线可视化 from functools import par ...
-
解决pytorch 模型复制的一些问题
直接使用 model2=model1 会出现当更新model2时,model1的权重也会更新,这和自己的初始目的不同. 经评论指出可以使用: model2=copy.deepcopy(model1) ...
-
从Pytorch模型pth文件中读取参数成numpy矩阵的操作
目的: 把训练好的pth模型参数提取出来,然后用其他方式部署到边缘设备. Pytorch给了很方便的读取参数接口: nn.Module.parameters() 直接看demo: from torch ...
-
pytorch模型的保存和加载、checkpoint操作
其实之前笔者写代码的时候用到模型的保存和加载,需要用的时候就去度娘搜一下大致代码,现在有时间就来整理下整个pytorch模型的保存和加载,开始学习把~ pytorch的模型和参数是分开的,可以分别保存 ...
-
PyTorch模型转TensorRT是怎么实现的?
转换步骤概览 准备好模型定义文件(.py文件) 准备好训练完成的权重文件(.pth或.pth.tar) 安装onnx和onnxruntime 将训练好的模型转换为.onnx格式 安装tensorRT ...
-
Python机器学习pytorch模型选择及欠拟合和过拟合详解
目录 训练误差和泛化误差 模型复杂性 模型选择 验证集 K折交叉验证 欠拟合还是过拟合? 模型复杂性 数据集大小 训练误差和泛化误差 训练误差是指,我们的模型在训练数据集上计算得到的误差. 泛化误差是 ...
-
如何将pytorch模型部署到安卓上的方法示例
目录 模型转化 安卓部署 新建项目 导入包 页面文件 模型推理 这篇文章演示如何将训练好的pytorch模型部署到安卓设备上.我也是刚开始学安卓,代码写的简单. 环境: pytorch版本:1.10. ...
-
PyTorch模型保存与加载实例详解
目录 一个简单的例子 保存/加载 state_dict(推荐) 保存/加载整个模型 保存加载用于推理的常规Checkpoint/或继续训练 保存多个模型到一个文件 使用其他模型来预热当前模型 跨设备保 ...
-
Pytorch模型定义与深度学习自查手册
目录 定义神经网络 权重初始化 方法1:net.apply(weights_init) 方法2:在网络初始化的时候进行参数初始化 常用的操作 利用nn.Parameter()设计新的层 nn.Flat ...
-
pytorch模型转onnx模型的方法详解
目录 学习目标 学习大纲 学习内容 1 . pytorch 转 onnx 2 . 运行onnx模型 3.onnx模型输出与pytorch模型比对 总结 学习目标 1.掌握pytorch模型转换到onn ...
-
AMP Tensor Cores节省内存PyTorch模型详解
目录 导读 什么是Tensor Cores? 那么,我们如何使用Tensor Cores? 使用PyTorch进行混合精度训练: 基准测试 导读 只需要添加几行代码,就可以得到更快速,更省显存的PyT ...