pytorch设定卷积核大小

  • 浅谈pytorch卷积核大小的设置对全连接神经元的影响

    3*3卷积核与2*5卷积核对神经元大小的设置 #这里kerner_size = 2*5 class CONV_NET(torch.nn.Module): #CONV_NET类继承nn.Module类 ...

  • pytorch 自定义卷积核进行卷积操作方式

    一 卷积操作:在pytorch搭建起网络时,大家通常都使用已有的框架进行训练,在网络中使用最多就是卷积操作,最熟悉不过的就是 torch.nn.Conv2d(in_channels, out_chan ...

  • mysql InnoDB建表时设定初始大小的方法

    InnoDB在写密集的压力时,由于B-Tree扩展,因而也会带来数据文件的扩展,然而,InnoDB数据文件扩展需要使用mutex保护数据文件,这就会导致波动. 丁奇的博客说明了这个问题:When In ...

  • Python Opencv基于透视变换的图像矫正

    本文实例为大家分享了Python Opencv基于透视变换的图像矫正,供大家参考,具体内容如下 一.自动获取图像顶点变换(获取图像轮廓顶点矫正) 图像旋转校正思路如下 1.以灰度图读入2.腐蚀膨胀,闭 ...

  • pytorch 如何查看数据类型和大小

    问题描述: 查看tensor数据大小时使用了data.shape(),报错: TypeError: 'torch.Size' object is not callable 或 TypeError: ' ...

  • Pytorch 使用CNN图像分类的实现

    需求 在4*4的图片中,比较外围黑色像素点和内圈黑色像素点个数的大小将图片分类 如上图图片外围黑色像素点5个大于内圈黑色像素点1个分为0类反之1类 想法 通过numpy.PIL构造4*4的图像数据集 ...

  • Pytorch模型微调fine-tune详解

    目录 2.1.为什么要微调 2.2.需要微调的情况 2.4.参数冻结---指定训练模型的部分层 2.5.参数冻结的方式 2.5.1.冻结方式1 2.5.2.冻结方式2 2.5.2.冻结方式3 2.6. ...

  • 关于Pytorch MaxUnpool2d中size操作方式

    下图所示为最大值的去池化操作,主要包括三个参数,kernel_size: 卷积核大小(一般为3,即3x3的卷积核), stride:步,还有一个新的size. 从图中可以看出,它将维度4x4的去池化结 ...

  • pytorch实现特殊的Module--Sqeuential三种写法

    我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- #@Time :2019/7/1 13:34 #@Author :XiaoMa import torch as t f ...

  • 基于pytorch padding=SAME的解决方式

    tensorflow中的conv2有padding='SAME'这个参数.吴恩达讲课中说到当padding=(f-1)/2(f为卷积核大小)时则是SAME策略.但是这个没有考虑到空洞卷积的情况,也没有 ...

  • Pytorch 卷积中的 Input Shape用法

    先看Pytorch中的卷积 class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dil ...

  • CNN的Pytorch实现(LeNet)

    目录 CNN的Pytorch实现(LeNet) 1. 任务目标 2. 库的导入 3. 模型定义 4. 数据加载.处理 5.模型训练 整个代码 CNN的Pytorch实现(LeNet)   上次写了一篇 ...

  • PyTorch简单手写数字识别的实现过程

    目录 一.包导入及所需数据的下载 关于数据集引入的改动 二.进行数据处理变换操作 三.数据预览测试和数据装载 四.模型搭建和参数优化 关于模型搭建的改动 总代码: 测试 总结 具体流程: ① 导入相应 ...

  • PyTorch实现卷积神经网络的搭建详解

    目录 PyTorch中实现卷积的重要基础函数 1.nn.Conv2d: 2.nn.MaxPool2d(kernel_size=2) 3.nn.ReLU() 4.x.view() 全部代码 PyTorc ...

  • Pytorch图像处理注意力机制解析及代码详解

    什么是注意力机制 注意力机制是一个非常有效的trick,注意力机制的实现方式有许多,我们一起来学习一下 注意力机制是深度学习常用的一个小技巧,它有多种多样的实现形式,尽管实现方式多样,但是每一种注意力 ...

  • Pytorch卷积神经网络迁移学习的目标及好处

    目录 前言 一.经典的卷积神经网络 二.迁移学习的目标 三.好处 四.步骤 五.代码 前言 在深度学习训练的过程中,随着网络层数的提升,我们训练的次数,参数都会提高,训练时间相应就会增加,我们今天来了 ...

  • Linux下如何调整根目录的空间大小

    一.目的 在使用CentOS6.3版本Linux系统的时候,发现根目录(/)的空间不是很充足,而其他目录空间有很大的空闲,所以本文主要是针对现在已有的空间进行调整.首先,先来查看一下系统的空间分配情况 ...

  • pytorch常用数据类型所占字节数对照表一览

    PyTorch上的常用数据类型如下 Data type dtype CPU tensor GPU tensor Size/bytes 32-bit floating torch.float32 or ...

  • pytorch1.0中torch.nn.Conv2d用法详解

    Conv2d的简单使用 torch 包 nn 中 Conv2d 的用法与 tensorflow 中类似,但不完全一样. 在 torch 中,Conv2d 有几个基本的参数,分别是 in_channel ...

  • 在keras里实现自定义上采样层

    Keras里的UpSampling2D层不是中的双线性内插,而是简单的重复图像.这点和pytorch不一样,pytorch默认使用的是双线性内插. 同样:这里仍然使用的是keras而不是tf.kera ...

  • 2024-03-11

    随机推荐