pytorch 半精度训练
-
解决Pytorch半精度浮点型网络训练的问题
用Pytorch1.0进行半精度浮点型网络训练需要注意下问题: 1.网络要在GPU上跑,模型和输入样本数据都要cuda().half() 2.模型参数转换为half型,不必索引到每层,直接model. ...
-
pytorch 使用半精度模型部署的操作
背景 pytorch作为深度学习的计算框架正得到越来越多的应用. 我们除了在模型训练阶段应用外,最近也把pytorch应用在了部署上. 在部署时,为了减少计算量,可以考虑使用16位浮点模型,而训练时涉 ...
-
pytorch 如何使用amp进行混合精度训练
简介 AMP:Automatic mixed precision,自动混合精度,可以在神经网络推理过程中,针对不同的层,采用不同的数据精度进行计算,从而实现节省显存和加快速度的目的. 在Pytorch ...
-
关于pytorch多GPU训练实例与性能对比分析
以下实验是我在百度公司实习的时候做的,记录下来留个小经验. 多GPU训练 cifar10_97.23 使用 run.sh 文件开始训练 cifar10_97.50 使用 run.4GPU.sh 开始训 ...
-
pytorch 固定部分参数训练的方法
需要自己过滤 optimizer.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=1e-3) 另外,如果是Variable, ...
-
pytorch 指定gpu训练与多gpu并行训练示例
一. 指定一个gpu训练的两种方法: 1.代码中指定 import torch torch.cuda.set_device(id) 2.终端中指定 CUDA_VISIBLE_DEVICES=1 pyt ...
-
解决Pytorch 加载训练好的模型 遇到的error问题
这是一个非常愚蠢的错误 debug的时候要好好看error信息 提醒自己切记好好对待error!切记!切记! -----------------------分割线---------------- py ...
-
pytorch 修改预训练model实例
我就废话不多说了,直接上代码吧! class Net(nn.Module): def __init__(self , model): super(Net, self).__init__() #取掉mo ...
-
解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题
背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 Da ...
-
PyTorch使用GPU训练的两种方法实例
目录 Pytorch 使用GPU训练 方法一 .cuda() 方法二 .to(device) 附:一些和GPU有关的基本操作汇总 总结 Pytorch 使用GPU训练 使用 GPU 训练只需要在原来的 ...
-
Pytorch Mac GPU 训练与测评实例
目录 正文 加速原理 环境配置 跑一个MNIST 跑一下VAE模型 一个愿景 正文 Pytorch的官方博客发了Apple M1 芯片 GPU加速的文章,这是我期待了很久的功能,因此很兴奋,立马进行测 ...
-
pytorch 准备、训练和测试自己的图片数据的方法
大部分的pytorch入门教程,都是使用torchvision里面的数据进行训练和测试.如果我们是自己的图片数据,又该怎么做呢? 一.我的数据 我在学习的时候,使用的是fashion-mnist.这个 ...
-
PyTorch dropout设置训练和测试模式的实现
看代码吧~ class Net(nn.Module): - model = Net() - model.train() # 把module设成训练模式,对Dropout和BatchNorm有影响 mo ...
-
pytorch fine-tune 预训练的模型操作
之一: torchvision 中包含了很多预训练好的模型,这样就使得 fine-tune 非常容易.本文主要介绍如何 fine-tune torchvision 中预训练好的模型. 安装 pip i ...
-
PyTorch的Optimizer训练工具的实现
torch.optim 是一个实现了各种优化算法的库.大部分常用的方法得到支持,并且接口具备足够的通用性,使得未来能够集成更加复杂的方法. 使用 torch.optim,必须构造一个 optimize ...
-
加速 PyTorch 模型训练的 9 个技巧(收藏)
目录 Pytorch-Lightning 1.DataLoaders 2.DataLoaders中的workers的数量 3.Batchsize 4.梯度累加 5.保留的计算图 6.单个GPU训练 7 ...
-
python PyTorch预训练示例
前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自 ...
-
PyTorch预训练的实现
前言 最近使用PyTorch感觉妙不可言,有种当初使用Keras的快感,而且速度还不慢.各种设计直接简洁,方便研究,比tensorflow的臃肿好多了.今天让我们来谈谈PyTorch的预训练,主要是自 ...
-
解决Pytorch训练过程中loss不下降的问题
在使用Pytorch进行神经网络训练时,有时会遇到训练学习率不下降的问题.出现这种问题的可能原因有很多,包括学习率过小,数据没有进行Normalization等.不过除了这些常规的原因,还有一种难以发 ...
-
pytorch锁死在dataloader(训练时卡死)
pytorch锁死在dataloader(训练时卡死)