pytorch 交叉熵损失输出为负数

  • 解决pytorch 交叉熵损失输出为负数的问题

    网络训练中,loss曲线非常奇怪 交叉熵怎么会有负数. 经过排查,交叉熵不是有个负对数吗,当网络输出的概率是0-1时,正数.可当网络输出大于1的数,就有可能变成负数. 所以加上一行就行了 out1 = ...

  • pytorch中交叉熵损失(nn.CrossEntropyLoss())的计算过程详解

    公式 首先需要了解CrossEntropyLoss的计算过程,交叉熵的函数是这样的: 其中,其中yi表示真实的分类结果.这里只给出公式,关于CrossEntropyLoss的其他详细细节请参照其他博文 ...

  • PyTorch的SoftMax交叉熵损失和梯度用法

    在PyTorch中可以方便的验证SoftMax交叉熵损失和对输入梯度的计算 关于softmax_cross_entropy求导的过程,可以参考HERE 示例: # -*- coding: utf-8 ...

  • Python机器学习pytorch交叉熵损失函数的深刻理解

    目录 1.交叉熵损失函数的推导 2. 交叉熵损失函数的直观理解 3. 交叉熵损失函数的其它形式 4.总结 说起交叉熵损失函数「Cross Entropy Loss」,脑海中立马浮现出它的公式: 我们已 ...

  • pytorch交叉熵损失函数的weight参数的使用

    首先 必须将权重也转为Tensor的cuda格式: 然后 将该class_weight作为交叉熵函数对应参数的输入值. class_weight = torch.FloatTensor([0.1385 ...

  • pytorch 实现二分类交叉熵逆样本频率权重

    通常,由于类别不均衡,需要使用weighted cross entropy loss平衡. def inverse_freq(label): """ 输入label [N ...

  • pytorch获取vgg16-feature层输出的例子

    实际应用时可能比较想获取VGG中间层的输出, 那么就可以如下操作: import numpy as np import torch from torchvision import models fro ...

  • 基于KL散度、JS散度以及交叉熵的对比

    在看论文<Detecting Regions of Maximal Divergence for Spatio-Temporal Anomaly Detection>时,文中提到了这三种方 ...

  • 使用Pytorch实现two-head(多输出)模型的操作

    如何使用Pytorch实现two-head(多输出)模型 1. two-head模型定义 先放一张我要实现的模型结构图: 如上图,就是一个two-head模型,也是一个但输入多输出模型.该模型的特点是 ...

  • Pytorch 的损失函数Loss function使用详解

    Pytorch 的损失函数Loss function使用详解

  • Pytorch十九种损失函数的使用详解

    损失函数通过torch.nn包实现, 1 基本用法 criterion = LossCriterion() #构造函数有自己的参数 loss = criterion(x, y) #调用标准时也有参数 ...

  • PyTorch的Debug指南

    一.ipdb 介绍 很多初学 python 的同学会使用 print 或 log 调试程序,但是这只在小规模的程序下调试很方便,更好的调试应该是在一边运行的时候一边检查里面的变量和方法. 感兴趣的可以 ...

  • pytorch 多个反向传播操作

    之前我的一篇文章pytorch 计算图以及backward,讲了一些pytorch中基本的反向传播,理清了梯度是如何计算以及下降的,建议先看懂那个,然后再看这个. 从一个错误说起: RuntimeEr ...

  • Pytorch BCELoss和BCEWithLogitsLoss的使用

    BCELoss 在图片多标签分类时,如果3张图片分3类,会输出一个3*3的矩阵. 先用Sigmoid给这些值都搞到0~1之间: 假设Target是: 下面我们用BCELoss来验证一下Loss是不是0 ...

  • pytorch中常用的损失函数用法说明

    pytorch中常用的损失函数用法说明

  • pytorch机器学习softmax回归的简洁实现

    目录 初始化模型参数 重新审视softmax的实现 优化算法 通过深度学习框架的高级API也能更方便地实现分类模型.让我们继续使用Fashion-MNIST数据集,并保持批量大小为256. impor ...

  • Pytorch搭建YoloV5目标检测平台实现过程

    目录 学习前言 源码下载 YoloV5改进的部分(不完全) YoloV5实现思路 一.整体结构解析 二.网络结构解析 2.构建FPN特征金字塔进行加强特征提取 三.预测结果的解码 1.获得预测框与得分 ...

  • 使用Pytorch如何完成多分类问题

    目录 Pytorch如何完成多分类 为什么要用transform 归一化 模型 总结 Pytorch如何完成多分类 多分类问题在最后的输出层采用的Softmax Layer,其具有两个特点:1.每个输 ...

  • 基于Pytorch实现分类器的示例详解

    目录 Softmax分类器 定义 训练 测试 感知机分类器 定义 训练 测试 本文实现两个分类器: softmax分类器和感知机分类器 Softmax分类器 Softmax分类是一种常用的多类别分类算 ...

  • pytorch神经网络从零开始实现多层感知机

    目录 初始化模型参数 激活函数 模型 损失函数 训练 我们已经在数学上描述了多层感知机,现在让我们尝试自己实现一个多层感知机.为了与我们之前使用softmax回归获得的结果进行比较,我们将继续使用Fa ...

  • 2024-03-07

    随机推荐