pytorch 多gpu与单gpu 效率
-
关于pytorch多GPU训练实例与性能对比分析
以下实验是我在百度公司实习的时候做的,记录下来留个小经验. 多GPU训练 cifar10_97.23 使用 run.sh 文件开始训练 cifar10_97.50 使用 run.4GPU.sh 开始训 ...
-
解决pytorch多GPU训练保存的模型,在单GPU环境下加载出错问题
背景 在公司用多卡训练模型,得到权值文件后保存,然后回到实验室,没有多卡的环境,用单卡训练,加载模型时出错,因为单卡机器上,没有使用DataParallel来加载模型,所以会出现加载错误. 原因 Da ...
-
Pytorch如何切换 cpu和gpu的使用详解
前言,在pytorch中,当服务器上的gpu被占用时,很多时候我们想先用cpu调试下代码,那么就需要进行gpu和cpu的切换. 方法1:x.to(device) 把 device 作为一个可变参数,推 ...
-
Pytorch自己加载单通道图片用作数据集训练的实例
pytorch 在torchvision包里面有很多的的打包好的数据集,例如minist,Imagenet-12,CIFAR10 和CIFAR100.在torchvision的dataset包里面,用 ...
-
tensorflow指定GPU与动态分配GPU memory设置
在tensorflow中,默认指定占用所有的GPU,如需指定占用的GPU,可以在命令行中: export CUDA_VISIBLE_DEVICES=1 这样便是只占用1号GPU,通过命令 nvidia ...
-
基于tensorflow指定GPU运行及GPU资源分配的几种方式小结
基于tensorflow指定GPU运行及GPU资源分配的几种方式小结
-
在tensorflow中设置使用某一块GPU、多GPU、CPU的操作
tensorflow下设置使用某一块GPU(从0开始编号): import os os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_I ...
-
keras实现多GPU或指定GPU的使用介绍
keras实现多GPU或指定GPU的使用介绍
-
Pytorch 高效使用GPU的操作
前言 深度学习涉及很多向量或多矩阵运算,如矩阵相乘.矩阵相加.矩阵-向量乘法等.深层模型的算法,如BP,Auto-Encoder,CNN等,都可以写成矩阵运算的形式,无须写成循环运算.然而,在单核CP ...
-
Pytorch GPU内存占用很高,但是利用率很低如何解决
Pytorch GPU内存占用很高,但是利用率很低如何解决
-
将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU ...
-
PyTorch 检查GPU版本是否安装成功的操作
anaconda命令行下检查: (base) PS C:\Users\chenxuqi> conda deactivate PS C:\Users\chenxuqi> conda acti ...
-
PyTorch使用GPU训练的两种方法实例
目录 Pytorch 使用GPU训练 方法一 .cuda() 方法二 .to(device) 附:一些和GPU有关的基本操作汇总 总结 Pytorch 使用GPU训练 使用 GPU 训练只需要在原来的 ...
-
Keras - GPU ID 和显存占用设定步骤
初步尝试 Keras (基于 Tensorflow 后端)深度框架时, 发现其对于 GPU 的使用比较神奇, 默认竟然是全部占满显存, 1080Ti 跑个小分类问题, 就一下子满了. 而且是服务器上的 ...
-
浅谈Tensorflow2对GPU内存的分配策略
目录 一.问题源起 二.开发环境 三.Tensorflow针对GPU内存的分配策略 四.问题分析验证 五.GPU分配策略分析 六.扩展 一.问题源起 从以下的异常堆栈可以看到是BLAS程序集初始化失败 ...
-
tensorflow使用指定gpu的方法
TensorFlow是一个基于数据流编程(dataflow programming)的符号数学系统,被广泛应用于各类机器学习(machine learning)算法的编程实现,其前身是谷歌的神经网络算 ...
-
Tensorflow全局设置可见GPU编号操作
笔者需要tensorflow仅运行在一个GPU上(机器本身有多GPU),而且需要依据系统参数动态调节,故无法简单使用CUDA_VISIBLE_DEVICES. 一种方式是全局使用tf.device函数 ...
-
详解tf.device()指定tensorflow运行的GPU或CPU设备实现
在tensorflow中,我们可以使用 tf.device() 指定模型运行的具体设备,可以指定运行在GPU还是CUP上,以及哪块GPU上. 设置使用GPU 使用 tf.device('/gpu:1' ...
-
如何使用gpu.js改善JavaScript的性能
你是否曾经尝试过运行复杂的计算,却发现它需要花费很长时间,并且拖慢了你的进程? 有很多方法可以解决这个问题,例如使用 web worker 或后台线程.GPU 减轻了 CPU 的处理负荷,给了 CPU ...
-
Python实现GPU加速的基本操作
目录 CUDA的线程与块 用GPU打印线程编号 用GPU打印块编号 用GPU打印块的维度 用GPU打印线程的维度 总结 GPU所支持的最大并行度 GPU的加速效果 总结概要 CUDA的线程与块 GPU ...