pytorch BN层详解
-
浅谈pytorch中的BN层的注意事项
最近修改一个代码的时候,当使用网络进行推理的时候,发现每次更改测试集的batch size大小竟然会导致推理结果不同,甚至产生错误结果,后来发现在网络中定义了BN层,BN层在训练过程中,会将一个Bat ...
-
pytorch 常用线性函数详解
Pytorch的线性函数主要封装了Blas和Lapack,其用法和接口都与之类似. 常用的线性函数如下: 函数 功能 trace 对角线元素之和(矩阵的迹) diag 对角线元素 triu/tril ...
-
pytorch方法测试详解——归一化(BatchNorm2d)
测试代码: import torch import torch.nn as nn m = nn.BatchNorm2d(2,affine=True) #权重w和偏重将被使用 input = torch ...
-
Keras 使用 Lambda层详解
我就废话不多说了,大家还是直接看代码吧! from tensorflow.python.keras.models import Sequential, Model from tensorflow.py ...
-
win10从零安装配置pytorch全过程图文详解
win10从零安装配置pytorch全过程图文详解
-
Java秒杀系统:web层详解
目录 设计Restful接口 SpringMVC 项目整合SpringMVC 使用SpringMVC实现Restful接口 逻辑交互 身份认证 计时面板 总结 设计Restful接口 根据需求设计前端 ...
-
关于MVC的dao层、service层和controller层详解
目录 MVC的dao层.service层和controller层 1.dao层 2.service层 3.controller层 4.view层 5.它们之间的关系 关于dao层/mapper层的一些 ...
-
可视化pytorch 模型中不同BN层的running mean曲线实例
加载模型字典 逐一判断每一层,如果该层是bn 的 running mean,就取出参数并取平均作为该层的代表 对保存的每个BN层的数值进行曲线可视化 from functools import par ...
-
Pytorch之卷积层的使用详解
Pytorch之卷积层的使用详解
-
对Pytorch中nn.ModuleList 和 nn.Sequential详解
简而言之就是,nn.Sequential类似于Keras中的贯序模型,它是Module的子类,在构建数个网络层之后会自动调用forward()方法,从而有网络模型生成.而nn.ModuleList仅仅 ...
-
pytorch的batch normalize使用详解
torch.nn.BatchNorm1d() 1.BatchNorm1d(num_features, eps = 1e-05, momentum=0.1, affine=True) 对于2d或3d输入 ...
-
pytorch:model.train和model.eval用法及区别详解
使用PyTorch进行训练和测试时一定注意要把实例化的model指定train/eval,eval()时,框架会自动把BN和DropOut固定住,不会取平均,而是用训练好的值,不然的话,一旦test的 ...
-
pytorch固定BN层参数的操作
背景: 基于PyTorch的模型,想固定主分支参数,只训练子分支,结果发现在不同epoch相同的测试数据经过主分支输出的结果不同. 原因: 未固定主分支BN层中的running_mean和runnin ...
-
PyTorch快速搭建神经网络及其保存提取方法详解
有时候我们训练了一个模型, 希望保存它下次直接使用,不需要下次再花时间去训练 ,本节我们来讲解一下PyTorch快速搭建神经网络及其保存提取方法详解 一.PyTorch快速搭建神经网络方法 先看实验代 ...
-
对Pytorch神经网络初始化kaiming分布详解
函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算. 增益值gain是一个比例值,来调控输入数量 ...
-
PyTorch中反卷积的用法详解
pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下: class torch.nn.Conv2d(in_channels, out_channels, kernel_size, str ...
-
pytorch中nn.Conv1d的用法详解
先粘贴一段official guide:nn.conv1d官方 我一开始被in_channels.out_channels卡住了很久,结果发现就和conv2d是一毛一样的.话不多说,先粘代码(菜鸡的自 ...
-
Pytorch 的损失函数Loss function使用详解
Pytorch 的损失函数Loss function使用详解
-
关于Pytorch的MNIST数据集的预处理详解
关于Pytorch的MNIST数据集的预处理详解 MNIST的准确率达到99.7% 用于MNIST的卷积神经网络(CNN)的实现,具有各种技术,例如数据增强,丢失,伪随机化等. 操作系统:ubuntu ...
-
pytorch的梯度计算以及backward方法详解
基础知识 tensors: tensor在pytorch里面是一个n维数组.我们可以通过指定参数reuqires_grad=True来建立一个反向传播图,从而能够计算梯度.在pytorch中一般叫做d ...