tensorflow和pytorch模型之间转换
-
浅谈tensorflow与pytorch的相互转换
目录 1.变量预定义 2.创建变量并初始化 3.语句执行 4.tensor 5.其他函数 本文以一段代码为例,简单介绍一下tensorflow与pytorch的相互转换(主要是tensorflow转p ...
-
MxNet预训练模型到Pytorch模型的转换方式
预训练模型在不同深度学习框架中的转换是一种常见的任务.今天刚好DPN预训练模型转换问题,顺手将这个过程记录一下. 核心转换函数如下所示: def convert_from_mxnet(model, c ...
-
如何计算 tensorflow 和 pytorch 模型的浮点运算数
目录 1. 引言 2. 模型结构 3. 计算模型的 FLOPs 3.1. tensorflow 1.12.0 3.2. tensorflow 2.3.1 3.3. pytorch 1.10.1+cu1 ...
-
pytorch_pretrained_bert如何将tensorflow模型转化为pytorch模型
pytorch_pretrained_bert将tensorflow模型转化为pytorch模型 BERT仓库里的模型是TensorFlow版本的,需要进行相应的转换才能在pytorch中使用 在Go ...
-
将Pytorch模型从CPU转换成GPU的实现方法
最近将Pytorch程序迁移到GPU上去的一些工作和思考 环境:Ubuntu 16.04.3 Python版本:3.5.2 Pytorch版本:0.4.0 0. 序言 大家知道,在深度学习中使用GPU ...
-
解决pytorch 模型复制的一些问题
直接使用 model2=model1 会出现当更新model2时,model1的权重也会更新,这和自己的初始目的不同. 经评论指出可以使用: model2=copy.deepcopy(model1) ...
-
Pytorch模型转onnx模型实例
如下所示: import io import torch import torch.onnx from models.C3AEModel import PlainC3AENetCBAM device ...
-
使用LibTorch进行C++调用pytorch模型方式
目录 环境 具体过程 下载LibTorch 用pytorch生成模型文件 VS创建工程并进行环境配置 运行VS2017工程文件 总结 前天由于某些原因需要利用C++调用PyTorch,于是接触到了Li ...
-
关于windows下Tensorflow和pytorch安装教程
一.Tensorflow安装 1.Tensorflow介绍 Tensorflow是广泛使用的实现机器学习以及其它涉及大量数学运算的算法库之一.Tensorflow由Google开发,是GitHub上最 ...
-
将keras的h5模型转换为tensorflow的pb模型操作
背景:目前keras框架使用简单,很容易上手,深得广大算法工程师的喜爱,但是当部署到客户端时,可能会出现各种各样的bug,甚至不支持使用keras,本文来解决的是将keras的h5模型转换为客户端常用 ...
-
keras模型保存为tensorflow的二进制模型方式
最近需要将使用keras训练的模型移植到手机上使用, 因此需要转换到tensorflow的二进制模型. 折腾一下午,终于找到一个合适的方法,废话不多说,直接上代码: # coding=utf-8 im ...
-
可视化pytorch 模型中不同BN层的running mean曲线实例
加载模型字典 逐一判断每一层,如果该层是bn 的 running mean,就取出参数并取平均作为该层的代表 对保存的每个BN层的数值进行曲线可视化 from functools import par ...
-
PyTorch模型转TensorRT是怎么实现的?
转换步骤概览 准备好模型定义文件(.py文件) 准备好训练完成的权重文件(.pth或.pth.tar) 安装onnx和onnxruntime 将训练好的模型转换为.onnx格式 安装tensorRT ...
-
Python机器学习pytorch模型选择及欠拟合和过拟合详解
目录 训练误差和泛化误差 模型复杂性 模型选择 验证集 K折交叉验证 欠拟合还是过拟合? 模型复杂性 数据集大小 训练误差和泛化误差 训练误差是指,我们的模型在训练数据集上计算得到的误差. 泛化误差是 ...
-
加速 PyTorch 模型训练的 9 个技巧(收藏)
目录 Pytorch-Lightning 1.DataLoaders 2.DataLoaders中的workers的数量 3.Batchsize 4.梯度累加 5.保留的计算图 6.单个GPU训练 7 ...
-
Tensorflow 实现线性回归模型的示例代码
目录 1.线性与非线性回归 案例讲解 1.数据集 2.读取训练数据Income.csv并可视化展示 3.利用Tensorflow搭建和训练神经网络模型[线性回归模型的建立] 4. 模型预测 1.线性与 ...
-
Pytorch模型定义与深度学习自查手册
目录 定义神经网络 权重初始化 方法1:net.apply(weights_init) 方法2:在网络初始化的时候进行参数初始化 常用的操作 利用nn.Parameter()设计新的层 nn.Flat ...
-
pytorch模型转onnx模型的方法详解
目录 学习目标 学习大纲 学习内容 1 . pytorch 转 onnx 2 . 运行onnx模型 3.onnx模型输出与pytorch模型比对 总结 学习目标 1.掌握pytorch模型转换到onn ...
-
PyTorch 模型 onnx 文件导出及调用详情
目录 前言 基本用法 高级 API 前言 Open Neural Network Exchange (ONNX,开放神经网络交换) 格式,是一个用于表示深度学习模型的标准,可使模型在不同框架之间进行转 ...
-
Python tensorflow与pytorch的浮点运算数如何计算
目录 1. 引言 2. 模型结构 3. 计算模型的 FLOPs 3.1. tensorflow 1.12.0 3.2. tensorflow 2.3.1 3.3. pytorch 1.10.1+cu1 ...
-
Pytorch模型微调fine-tune详解
目录 2.1.为什么要微调 2.2.需要微调的情况 2.4.参数冻结---指定训练模型的部分层 2.5.参数冻结的方式 2.5.1.冻结方式1 2.5.2.冻结方式2 2.5.2.冻结方式3 2.6. ...