tensorflow gru参数
-
python神经网络Keras实现GRU及其参数量
目录 什么是GRU 1.GRU单元的输入与输出 2.GRU的门结构 3.GRU的参数量计算 a.更新门 b.重置门 c.全部参数量 在Keras中实现GRU 实现代码 什么是GRU GRU是LSTM的 ...
-
解决tensorflow模型参数保存和加载的问题
终于找到bug原因!记一下:还是不熟悉平台的原因造成的! Q:为什么会出现两个模型对象在同一个文件中一起运行,当直接读取他们分开运行时训练出来的模型会出错,而且总是有一个正确,一个读取错误? 而 直接 ...
-
tensorflow 固定部分参数训练,只训练部分参数的实例
在使用tensorflow来训练一个模型的时候,有时候需要依靠验证集来判断模型是否已经过拟合,是否需要停止训练. 1.首先想到的是用tf.placeholder()载入不同的数据来进行计算,比如 de ...
-
keras的backend 设置 tensorflow,theano操作
win7 系统环境安装步骤: 1.首先是安装Python,建议安装anaconda 2.安装完anaconda后打开anaconda promp命令行promp,输入conda list. 可以看到已 ...
-
python人工智能tensorflow函数tf.assign使用方法
目录 参数数量及其作用 例子 参数数量及其作用 该函数共有五个参数,分别是: 被赋值的变量 ref 要分配给变量的值 value. 是否验证形状 validate_shape 是否进行锁定保护 use ...
-
tensorflow 获取模型所有参数总和数量的方法
实例如下所示: from functools import reduce from operator import mul def get_num_params(): num_params = 0 f ...
-
TensorFlow利用saver保存和提取参数的实例
在训练循环中,定期调用 saver.save() 方法,向文件夹中写入包含了当前模型中所有可训练变量的 checkpoint 文件. saver.save(sess, FLAGS.train_dir, ...
-
tensorflow 使用flags定义命令行参数的方法
tf定义了tf.app.flags,用于支持接受命令行传递参数,相当于接受argv. import tensorflow as tf #第一个是参数名称,第二个参数是默认值,第三个是参数描述 tf.a ...
-
关于tensorflow的几种参数初始化方法小结
在tensorflow中,经常会遇到参数初始化问题,比如在训练自己的词向量时,需要对原始的embeddigs矩阵进行初始化,更一般的,在全连接神经网络中,每层的权值w也需要进行初始化. tensorl ...
-
对tensorflow中的strides参数使用详解
在二维卷积函数tf.nn.conv2d(),最大池化函数tf.nn.max_pool(),平均池化函数 tf.nn.avg_pool()中,卷积核的移动步长都需要制定一个参数strides(步长),因 ...
-
tensorflow 只恢复部分模型参数的实例
我就废话不多说了,直接上代码吧! import tensorflow as tf def model_1(): with tf.variable_scope("var_a"): a ...
-
tensorflow实现测试时读取任意指定的check point的网络参数
tensorflow在训练时会保存三个文件, model.ckpt-xxx.data-00000-of-00001 model.ckpt-xxx.index model.ckpt-xxx.meta 其 ...
-
Tensorflow实现部分参数梯度更新操作
在深度学习中,迁移学习经常被使用,在大数据集上预训练的模型迁移到特定的任务,往往需要保持模型参数不变,而微调与任务相关的模型层. 本文主要介绍,使用tensorflow部分更新模型参数的方法. 1. ...
-
tensorflow获取预训练模型某层参数并赋值到当前网络指定层方式
已经有了一个预训练的模型,我需要从其中取出某一层,把该层的weights和biases赋值到新的网络结构中,可以使用tensorflow中的pywrap_tensorflow(用来读取预训练模型的参数 ...
-
TensorFlow Saver:保存和读取模型参数.ckpt实例
在使用TensorFlow的过程中,保存模型参数变量是很重要的一个环节,既可以保证训练过程信息不丢失,也可以帮助我们在需要快速恢复或使用一个模型的时候,利用之前保存好的参数之间导入,可以节省大量的训练 ...
-
Tensorflow 使用pb文件保存(恢复)模型计算图和参数实例详解
一.保存: graph_util.convert_variables_to_constants 可以把当前session的计算图串行化成一个字节流(二进制),这个函数包含三个参数:参数1:当前活动的s ...
-
在tensorflow实现直接读取网络的参数(weight and bias)的值
训练好了一个网络,想要查看网络里面参数是否经过BP算法优化过,可以直接读取网络里面的参数,如果一直是随机初始化的值,则证明训练代码有问题,需要改. 下面介绍如何直接读取网络的weight 和 bias ...
-
关于pytorch中网络loss传播和参数更新的理解
相比于2018年,在ICLR2019提交论文中,提及不同框架的论文数量发生了极大变化,网友发现,提及tensorflow的论文数量从2018年的228篇略微提升到了266篇,keras从42提升到56 ...
-
Python tensorflow与pytorch的浮点运算数如何计算
目录 1. 引言 2. 模型结构 3. 计算模型的 FLOPs 3.1. tensorflow 1.12.0 3.2. tensorflow 2.3.1 3.3. pytorch 1.10.1+cu1 ...
-
如何计算 tensorflow 和 pytorch 模型的浮点运算数
目录 1. 引言 2. 模型结构 3. 计算模型的 FLOPs 3.1. tensorflow 1.12.0 3.2. tensorflow 2.3.1 3.3. pytorch 1.10.1+cu1 ...