详解Java多线程编程中LockSupport类的线程阻塞用法

LockSupport是用来创建锁和其他同步类的基本线程阻塞原语。
LockSupport中的park() 和 unpark() 的作用分别是阻塞线程和解除阻塞线程,而且park()和unpark()不会遇到“Thread.suspend 和 Thread.resume所可能引发的死锁”问题。
因为park() 和 unpark()有许可的存在;调用 park() 的线程和另一个试图将其 unpark() 的线程之间的竞争将保持活性。

基本用法
LockSupport 很类似于二元信号量(只有1个许可证可供使用),如果这个许可还没有被占用,当前线程获取许可并继 续 执行;如果许可已经被占用,当前线 程阻塞,等待获取许可。

public static void main(String[] args)
{
   LockSupport.park();
   System.out.println("block.");
}

运行该代码,可以发现主线程一直处于阻塞状态。因为 许可默认是被占用的 ,调用park()时获取不到许可,所以进入阻塞状态。

如下代码:先释放许可,再获取许可,主线程能够正常终止。LockSupport许可的获取和释放,一般来说是对应的,如果多次unpark,只有一次park也不会出现什么问题,结果是许可处于可用状态。

public static void main(String[] args)
{
   Thread thread = Thread.currentThread();
   LockSupport.unpark(thread);//释放许可
   LockSupport.park();// 获取许可
   System.out.println("b");
}

LockSupport是可不重入 的,如果一个线程连续2次调用 LockSupport .park(),那么该线程一定会一直阻塞下去。

public static void main(String[] args) throws Exception
{
 Thread thread = Thread.currentThread();

 LockSupport.unpark(thread);

 System.out.println("a");
 LockSupport.park();
 System.out.println("b");
 LockSupport.park();
 System.out.println("c");
}

这段代码打印出a和b,不会打印c,因为第二次调用park的时候,线程无法获取许可出现死锁。

下面我们来看下LockSupport对应中断的响应性

public static void t2() throws Exception
{
 Thread t = new Thread(new Runnable()
 {
  private int count = 0;

  @Override
  public void run()
  {
   long start = System.currentTimeMillis();
   long end = 0;

   while ((end - start) <= 1000)
   {
    count++;
    end = System.currentTimeMillis();
   }

   System.out.println("after 1 second.count=" + count);

  //等待或许许可
   LockSupport.park();
   System.out.println("thread over." + Thread.currentThread().isInterrupted());

  }
 });

 t.start();

 Thread.sleep(2000);

 // 中断线程
 t.interrupt();

 System.out.println("main over");
}

最终线程会打印出thread over.true。这说明 线程如果因为调用park而阻塞的话,能够响应中断请求(中断状态被设置成true),但是不会抛出InterruptedException 。

LockSupport函数列表

// 返回提供给最近一次尚未解除阻塞的 park 方法调用的 blocker 对象,如果该调用不受阻塞,则返回 null。
static Object getBlocker(Thread t)
// 为了线程调度,禁用当前线程,除非许可可用。
static void park()
// 为了线程调度,在许可可用之前禁用当前线程。
static void park(Object blocker)
// 为了线程调度禁用当前线程,最多等待指定的等待时间,除非许可可用。
static void parkNanos(long nanos)
// 为了线程调度,在许可可用前禁用当前线程,并最多等待指定的等待时间。
static void parkNanos(Object blocker, long nanos)
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
static void parkUntil(long deadline)
// 为了线程调度,在指定的时限前禁用当前线程,除非许可可用。
static void parkUntil(Object blocker, long deadline)
// 如果给定线程的许可尚不可用,则使其可用。
static void unpark(Thread thread)


LockSupport示例
对比下面的“示例1”和“示例2”可以更清晰的了解LockSupport的用法。
示例1

public class WaitTest1 {

  public static void main(String[] args) {

    ThreadA ta = new ThreadA("ta");

    synchronized(ta) { // 通过synchronized(ta)获取“对象ta的同步锁”
      try {
        System.out.println(Thread.currentThread().getName()+" start ta");
        ta.start();

        System.out.println(Thread.currentThread().getName()+" block");
        // 主线程等待
        ta.wait();

        System.out.println(Thread.currentThread().getName()+" continue");
      } catch (InterruptedException e) {
        e.printStackTrace();
      }
    }
  }

  static class ThreadA extends Thread{

    public ThreadA(String name) {
      super(name);
    }

    public void run() {
      synchronized (this) { // 通过synchronized(this)获取“当前对象的同步锁”
        System.out.println(Thread.currentThread().getName()+" wakup others");
        notify();  // 唤醒“当前对象上的等待线程”
      }
    }
  }
}

示例2

import java.util.concurrent.locks.LockSupport;

public class LockSupportTest1 {

  private static Thread mainThread;

  public static void main(String[] args) {

    ThreadA ta = new ThreadA("ta");
    // 获取主线程
    mainThread = Thread.currentThread();

    System.out.println(Thread.currentThread().getName()+" start ta");
    ta.start();

    System.out.println(Thread.currentThread().getName()+" block");
    // 主线程阻塞
    LockSupport.park(mainThread);

    System.out.println(Thread.currentThread().getName()+" continue");
  }

  static class ThreadA extends Thread{

    public ThreadA(String name) {
      super(name);
    }

    public void run() {
      System.out.println(Thread.currentThread().getName()+" wakup others");
      // 唤醒“主线程”
      LockSupport.unpark(mainThread);
    }
  }
}

运行结果:

main start ta
main block
ta wakup others
main continue

说明:park和wait的区别。wait让线程阻塞前,必须通过synchronized获取同步锁。

时间: 2016-07-09

Java并发编程之显示锁ReentrantLock和ReadWriteLock读写锁

在Java5.0之前,只有synchronized(内置锁)和volatile. Java5.0后引入了显示锁ReentrantLock. ReentrantLock概况 ReentrantLock是可重入的锁,它不同于内置锁, 它在每次使用都需要显示的加锁和解锁, 而且提供了更高级的特性:公平锁, 定时锁, 有条件锁, 可轮询锁, 可中断锁. 可以有效避免死锁的活跃性问题.ReentrantLock实现了 Lock接口: 复制代码 代码如下: public interface Lock {  

深入Synchronized和java.util.concurrent.locks.Lock的区别详解

主要相同点:Lock能完成Synchronized所实现的所有功能.主要不同点:Lock有比Synchronized更精确的线程予以和更好的性能.Synchronized会自动释放锁,但是Lock一定要求程序员手工释放,并且必须在finally从句中释放.synchronized 修饰方法时 表示同一个对象在不同的线程中 表现为同步队列如果实例化不同的对象 那么synchronized就不会出现同步效果了.1.对象的锁 所有对象都自动含有单一的锁. JVM负责跟踪对象被加锁的次数.如果一个对象被

Java多线程编程之读写锁ReadWriteLock用法实例

读写锁:分为读锁和写锁,多个读锁不互斥,读锁与写锁互斥,这是由jvm自己控制的,你只要上好相应的锁即可.如果你的代码只读数据,可以很多人同时读,但不能同时写,那就上读锁:如果你的代码修改数据,只能有一个人在写,且不能同时读取,那就上写锁.总之,读的时候上读锁,写的时候上写锁! 三个线程读数据,三个线程写数据示例: 可以同时读,读的时候不能写,不能同时写,写的时候不能读. 读的时候上读锁,读完解锁:写的时候上写锁,写完解锁. 注意finally解锁. package com.ljq.test.th

java线程并发blockingqueue类使用示例

如果BlockingQueue是满的任何试图往里存东西的操作也会被阻断进入等待状态,直到BlockingQueue里有新的空间才会被唤醒继续操作. BlockingQueue提供的方法主要有: add(anObject): 把anObject加到BlockingQueue里,如果BlockingQueue可以容纳返回true,否则抛出IllegalStateException异常. offer(anObject):把anObject加到BlockingQueue里,如果BlockingQueue

java线程阻塞中断与LockSupport使用介绍

上周五和周末,工作忙里偷闲,在看java cocurrent中也顺便再温故了一下Thread.interrupt和java 5之后的LockSupport的实现. 在介绍之前,先抛几个问题. Thread.interrupt()方法和InterruptedException异常的关系?是由interrupt触发产生了InterruptedException异常? Thread.interrupt()会中断线程什么状态的工作? RUNNING or BLOCKING? 一般Thread编程需要关注

Java多线程编程之Lock用法实例

锁是控制多个线程对共享资源进行访问的工具.通常,锁提供了对共享资源的独占访问.一次只能有一个线程获得锁,对共享资源的所有访问都需要首先获得锁.不过,某些锁可能允许对共享资源并发访问,如 ReadWriteLock(维护了一对相关的锁,一个用于只读操作,另一个用于写入操作) 的读写锁. 1.Lock提供了无条件的.可轮询的.定时的.可中断的锁获取操作,所有加锁和解锁的方法都是显式的. public interface Lock{ void lock(); //加锁 //优先考虑响应中断,而不是响应

java Lock接口详解及实例代码

java  Lock接口 java.util.concurrent.locks 接口Lock public interface Loce Loce实现提供了比使用synchronized方法和语句可获得的更广泛的锁定操作 import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; public class IntegerDemo { public static void main

java多线程并发中使用Lockers类将多线程共享资源锁定

复制代码 代码如下: package com.yao; import java.util.concurrent.ExecutorService;import java.util.concurrent.Executors;import java.util.concurrent.Future;import java.util.concurrent.locks.Lock;import java.util.concurrent.locks.ReadWriteLock;import java.util.c

java中LinkedBlockingQueue与ArrayBlockingQueue的异同

相同: 1.LinkedBlockingQueue和ArrayBlockingQueue都实现了BlockingQueue接口: 2.LinkedBlockingQueue和ArrayBlockingQueue都是可阻塞的队列 内部都是使用ReentrantLock和Condition来保证生产和消费的同步: 当队列为空,消费者线程被阻塞:当队列装满,生产者线程被阻塞: 使用Condition的方法来同步和通信:await()和signal() 不同: 1.由上图可以看出,他们的锁机制不同 Li

java集合框架 arrayblockingqueue应用分析

Queue ------------ 1.ArrayDeque, (数组双端队列) 2.PriorityQueue, (优先级队列) 3.ConcurrentLinkedQueue, (基于链表的并发队列) 4.DelayQueue, (延期阻塞队列)(阻塞队列实现了BlockingQueue接口) 5.ArrayBlockingQueue, (基于数组的并发阻塞队列) 6.LinkedBlockingQueue, (基于链表的FIFO阻塞队列) 7.LinkedBlockingDeque, (

SVN出现提示org.apache.subversion.javahl.ClientException: Attempted to lock an already-locked dir解决方案

SVN出现提示org.apache.subversion.javahl.ClientException: Attempted to lock an already-locked dir解决方案 第一种方法: 通过svn插件来清理,首先选中项目,右键,选择team->refresh/cleanup即可.然后再更新文件就不会提示org.apache.subversion.javahl.ClientException: Attempted to lock an already-lockeddir了.但

基于java中BlockingQueue的使用介绍

最近在维护一个java工程,在群里面也就聊起来java的优劣!无奈一些Java的终极粉丝,总是号称性能已经不必C++差,并且很多标准类库都是大师级的人写的,如何如何稳定等等.索性就认真研究一番,他们给我的一项说明就是,在线程之间投递消息,用java已经封装好的BlockingQueue,就足够用了. 既然足够用那就写代码测试喽,简简单单写一个小程序做了一番测试: 复制代码 代码如下: //默认包 import java.util.concurrent.*; import base.MyRunna

详解Java多线程编程中互斥锁ReentrantLock类的用法

0.关于互斥锁 所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别: synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是

详解Java多线程编程中的线程同步方法

1.多线程的同步: 1.1.同步机制: 在多线程中,可能有多个线程试图访问一个有限的资源,必须预防这种情况的发生.所以引入了同步机制:在线程使用一个资源时为其加锁,这样其他的线程便不能访问那个资源了,直到解锁后才可以访问. 1.2.共享成员变量的例子: 成员变量与局部变量: 成员变量: 如果一个变量是成员变量,那么多个线程对同一个对象的成员变量进行操作,这多个线程是共享一个成员变量的. 局部变量: 如果一个变量是局部变量,那么多个线程对同一个对象进行操作,每个线程都会有一个该局部变量的拷贝.他们

详解Java多线程编程中线程的启动、中断或终止操作

线程启动: 1.start() 和 run()的区别说明 start() : 它的作用是启动一个新线程,新线程会执行相应的run()方法.start()不能被重复调用. run() : run()就和普通的成员方法一样,可以被重复调用.单独调用run()的话,会在当前线程中执行run(),而并不会启动新线程! 下面以代码来进行说明. class MyThread extends Thread{ public void run(){ ... } }; MyThread mythread = new

详解Java多线程编程中CountDownLatch阻塞线程的方法

直译过来就是倒计数(CountDown)门闩(Latch).倒计数不用说,门闩的意思顾名思义就是阻止前进.在这里就是指 CountDownLatch.await() 方法在倒计数为0之前会阻塞当前线程. CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,它允许一个或多个线程一直等待. CountDownLatch 的作用和 Thread.join() 方法类似,可用于一组线程和另外一组线程的协作.例如,主线程在做一项工作之前需要一系列的准备工作,只有这些准备工

详解java并发之重入锁-ReentrantLock

前言 目前主流的锁有两种,一种是synchronized,另一种就是ReentrantLock,JDK优化到现在目前为止synchronized的性能已经和重入锁不分伯仲了,但是重入锁的功能和灵活性要比这个关键字多的多,所以重入锁是可以完全替代synchronized关键字的.下面就来介绍这个重入锁. 正文 ReentrantLock重入锁是Lock接口里最重要的实现,也是在实际开发中应用最多的一个,我这篇文章更接近实际开发的应用场景,为开发者提供直接上手应用.所以不是所有方法我都讲解,有些冷门

详解Java设计模式编程中的策略模式

定义:定义一组算法,将每个算法都封装起来,并且使他们之间可以互换. 类型:行为类模式 类图: 策略模式是对算法的封装,把一系列的算法分别封装到对应的类中,并且这些类实现相同的接口,相互之间可以替换.在前面说过的行为类模式中,有一种模式也是关注对算法的封装--模版方法模式,对照类图可以看到,策略模式与模版方法模式的区别仅仅是多了一个单独的封装类Context,它与模版方法模式的区别在于:在模版方法模式中,调用算法的主体在抽象的父类中,而在策略模式中,调用算法的主体则是封装到了封装类Context中

Java多线程编程中线程锁与读写锁的使用示例

线程锁Lock Lock  相当于 当前对象的 Synchronized import java.util.concurrent.locks.Lock; import java.util.concurrent.locks.ReentrantLock; /* * Lock lock = new ReentrantLock(); * lock.lock(); lock.unLock(); * 类似于 synchronized,但不能与synchronized 混用 */ public class L

详解Java设计模式编程中的依赖倒置原则

定义: 高层模块不应该依赖低层模块,二者都应该依赖其抽象:抽象不应该依赖细节:细节应该依赖抽象. 问题由来:类A直接依赖类B,假如要将类A改为依赖类C,则必须通过修改类A的代码来达成.这种场景下,类A一般是高层模块,负责复杂的业务逻辑:类B和类C是低层模块,负责基本的原子操作:假如修改类A,会给程序带来不必要的风险. 解决方案:将类A修改为依赖接口I,类B和类C各自实现接口I,类A通过接口I间接与类B或者类C发生联系,则会大大降低修改类A的几率.          依赖倒置原则基于这样一个事实:

详解Java设计模式编程中的访问者模式

定义:封装某些作用于某种数据结构中各元素的操作,它可以在不改变数据结构的前提下定义作用于这些元素的新的操作. 类型:行为类模式 类图: 例子: 例如,思考一下添加不同类型商品的购物车,当点击结算的时候,它计算出所有不同商品需付的费用.现在,计算逻辑即为计算这些不同类型商品的价格.或者说通过访问者模式我们把此逻辑转移到了另外一个类上面.让我们实现这个访问者模式的例子. 为了实现访问者模式,最先需要做的是创建能够被添加到购物车中代表不同类型商品(itemElement)的类. ItemElement