Python产生batch数据的操作

产生batch数据

输入data中每个样本可以有多个特征,和一个标签,最好都是numpy.array格式。

datas = [data1, data2, …, dataN ], labels = [label1, label2, …, labelN],

其中data[i] = [feature1, feature2,…featureM], 表示每个样本数据有M个特征。

输入我们方法的数据,all_data = [datas, labels] 。

代码实现

通过索引值来产生batch大小的数据,同时提供是否打乱顺序的选择,根据随机产生数据量范围类的索引值来打乱顺序。

import numpy as np
def batch_generator(all_data , batch_size, shuffle=True):
 """
 :param all_data : all_data整个数据集,包含输入和输出标签
 :param batch_size: batch_size表示每个batch的大小
 :param shuffle: 是否打乱顺序
 :return:
 """
 # 输入all_datas的每一项必须是numpy数组,保证后面能按p所示取值
 all_data = [np.array(d) for d in all_data]
 # 获取样本大小
 data_size = all_data[0].shape[0]
 print("data_size: ", data_size)
 if shuffle:
  # 随机生成打乱的索引
  p = np.random.permutation(data_size)
  # 重新组织数据
  all_data = [d[p] for d in all_data]
 batch_count = 0
 while True:
  # 数据一轮循环(epoch)完成,打乱一次顺序
  if batch_count * batch_size + batch_size > data_size:
   batch_count = 0
   if shuffle:
    p = np.random.permutation(data_size)
    all_data = [d[p] for d in all_data]
  start = batch_count * batch_size
  end = start + batch_size
  batch_count += 1
  yield [d[start: end] for d in all_data]

测试数据

样本数据x和标签y可以分开输入,也可以同时输入。

# 输入x表示有23个样本,每个样本有两个特征
# 输出y表示有23个标签,每个标签取值为0或1
x = np.random.random(size=[23, 2])
y = np.random.randint(2, size=[23,1])
count = x.shape[0]
batch_size = 5
epochs = 20
batch_num = count // batch_size
batch_gen = batch_generator([x, y], batch_size)
for i in range(epochs):
 print("##### epoch %s ##### " % i)
 for j in range(batch_num):
  batch_x, batch_y = next(batch_gen)
  print("-----epoch=%s, batch=%s-----" % (i, j))
  print(batch_x, batch_y)

补充:使用tensorflow.data.Dataset构造batch数据集

import tensorflow as tf
import numpy as np
def _parse_function(x):
 num_list = np.arange(10)
 return num_list
def _from_tensor_slice(x):
 return tf.data.Dataset.from_tensor_slices(x)
softmax_data = tf.data.Dataset.range(1000) # 构造一个队列
softmax_data = softmax_data.map(lambda x:tf.py_func(_parse_function, [x], [tf.int32]))# 将数据进行传入
softmax_data = softmax_data.flat_map(_from_tensor_slice) #将数据进行平铺, 将其变为一维的数据,from_tensor_slice将数据可以输出
softmax_data = softmax_data.batch(1) #构造一个batch的数量
softmax_iter = softmax_data.make_initializable_iterator() # 构造数据迭代器
softmax_element = softmax_iter.get_next() # 获得一个batch的数据
sess = tf.Session()
sess.run(softmax_iter.initializer) # 数据迭代器的初始化操作
print(sess.run(softmax_element)) # 实际获得一个数据
print(sess.run(softmax_data))

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。如有错误或未考虑完全的地方,望不吝赐教。

(0)

相关推荐

  • Python从数据库读取大量数据批量写入文件的方法

    使用机器学习训练数据时,如果数据量较大可能我们不能够一次性将数据加载进内存,这时我们需要将数据进行预处理,分批次加载进内存. 下面是代码作用是将数据从数据库读取出来分批次写入txt文本文件,方便我们做数据的预处理和训练机器学习模型. #%% import pymssql as MySQLdb #这里是python3 如果你是python2.x的话,import MySQLdb #数据库连接属性 hst = '188.10.34.18' usr = 'sa' passwd = 'p@ssw0rd'

  • pytorch 自定义数据集加载方法

    pytorch 官网给出的例子中都是使用了已经定义好的特殊数据集接口来加载数据,而且其使用的数据都是官方给出的数据.如果我们有自己收集的数据集,如何用来训练网络呢?此时需要我们自己定义好数据处理接口.幸运的是pytroch给出了一个数据集接口类(torch.utils.data.Dataset),可以方便我们继承并实现自己的数据集接口. torch.utils.data torch的这个文件包含了一些关于数据集处理的类. class torch.utils.data.Dataset: 一个抽象类

  • 使用Python实现将多表分批次从数据库导出到Excel

    一.应用场景 为了避免反复的手手工从后台数据库导出某些数据表到Excel文件.高效率到多份离线数据. 二.功能事项 支持一次性导出多个数据源表.自动获取各表的字段名. 支持控制批次的写入速率.例如:每5000行一个批次写入到excel. 支持结构相同的表导入到同一个Excel文件.可适用于经过水平切分后的分布式表. 三.主要实现 1.概览 A[创建类] -->|方法1| B(创建数据库连接) A[创建类] -->|方法2| C(取查询结果集) A[创建类] -->|方法3| D(利用句柄

  • Python产生batch数据的操作

    产生batch数据 输入data中每个样本可以有多个特征,和一个标签,最好都是numpy.array格式. datas = [data1, data2, -, dataN ], labels = [label1, label2, -, labelN], 其中data[i] = [feature1, feature2,-featureM], 表示每个样本数据有M个特征. 输入我们方法的数据,all_data = [datas, labels] . 代码实现 通过索引值来产生batch大小的数据,同

  • python 存储json数据的操作

    本篇我们将学习简单的json数据的存储 首先我们需要引入json模块: import json 这里我们模拟一个常见常见,我们让用户输入用户名.密码,在密码输入完成后提示用户再次输入密码来确认自己的输入,如果两次密码一致,那么我们将用户名和密码以json格式写入文件,否则提示用户再次输入密码. name = input("please enter your name:") password = input("please enter your password:")

  • Python常见数据类型转换操作示例

    本文实例讲述了Python常见数据类型转换操作.分享给大家供大家参考,具体如下: 类型转换 主要针对几种存储工具:list.tuple.dict.set 特殊之处:dict是用来存储键值对的. 1.list 转换为set l1 = [1, 2, 4, 5] s1 = set(l1) print(type(s1)) print(s1) 输出: <class 'set'> {1, 2, 4, 5} 2.set转换为list s1 = set([1, 2, 3, 4]) l1 = list(s1)

  • Python对ElasticSearch获取数据及操作

    使用Python对ElasticSearch获取数据及操作,供大家参考,具体内容如下 Version Python :2.7 ElasticSearch:6.3 代码: #!/usr/bin/env python # -*- coding: utf-8 -*- """ @Time : 2018/7/4 @Author : LiuXueWen @Site : @File : ElasticSearchOperation.py @Software: PyCharm @Descri

  • python实现对excel进行数据剔除操作实例

    前言 学习Python的过程中,我们会遇到Excel的各种问题.下面这篇文章主要给大家介绍了关于python对excel进行数据剔除操作的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. Python解析Excel时需要安装两个包,分别是xlrd(读excel)和xlwt(写excel),安装方法如下: pip install xlrd pip install xlwt 需求分析: 判断excel2表中的某个唯一字段是否满足条件,如果满足条件,就在excel1中进行查询

  • python 发送json数据操作实例分析

    本文实例讲述了python 发送json数据操作.分享给大家供大家参考,具体如下: # !/usr/bin/env python # -*- coding: utf-8 -*- import urllib2 import urllib import cookielib import json import httplib import re import requests from lxml import etree import StringIO import time s = request

  • 使用python实现多维数据降维操作

    一,首先介绍下多维列表的降维 def flatten(a): for each in a: if not isinstance(each,list): yield each else: yield from flatten(each) if __name__ == "__main__": a = [[1,2],[3,[4,5]],6] print(list(flatten(a))) 二.这种降维方法同样适用于多维迭代器的降维 from collections import Iterab

  • python 删除excel表格重复行,数据预处理操作

    使用python删除excel表格重复行. # 导入pandas包并重命名为pd import pandas as pd # 读取Excel中Sheet1中的数据 data = pd.DataFrame(pd.read_excel('test.xls', 'Sheet1')) # 查看读取数据内容 print(data) # 查看是否有重复行 re_row = data.duplicated() print(re_row) # 查看去除重复行的数据 no_re_row = data.drop_d

  • Python 抓取数据存储到Redis中的操作

    redis是一个key-value存储结构.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).set(集合).zset(sorted set 有序集合)和hash(哈希类型),数据存储如下图分析 为了分别为ID存入多个键值对,此次仅对Hash数据进行操作,例子如下 import os,sys import requests import bs4 import redis #连接Redis r = redis.Redis(host='127

  • python mongo 向数据中的数组类型新增数据操作

    我就废话不多说了,大家还是直接看图吧~ 补充知识:pymongo插入数据时更新和不更新的使用 (1)update的setOnInsert 当该key不存在的时候执行插入操作,当存在的时候则不管,可以使用setOnInsert db.test.update({'_id': 'id'}, {'$setOnInsert': {'a': 'a'}, true) 当id存在的时候,忽略setOnInsert. (2)update的set 当key不存在的时候执行插入操作,当存在的时候更新除key以外的se

随机推荐