pandas 两列时间相减换算为秒的方法

如下所示:

pd.to_datetime(data[data['last_O_XLMC']==data['O_XLMC']]['O_SJFCSJ'], format='%H:%M:%S')-pd.to_datetime(data['last_O_SJFCSJ'], format='%H:%M:%S')).dt.total_seconds()

以上这篇pandas 两列时间相减换算为秒的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2018-04-19

python pandas生成时间列表

python生成一个日期列表 首先导入pandas import pandas as pd def get_date_list(begin_date,end_date): date_list = [x.strftime('%Y-%m-%d') for x in list(pd.date_range(start=begin_date, end=end_date))] return date_list ### 可以测试 print(get_date_list('2018-06-01','2018-0

python时间日期函数与利用pandas进行时间序列处理详解

python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 下面我们先简单的了解下python日期和时间数据类型及工具 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime impo

pandas进行时间数据的转换和计算时间差并提取年月日

#pd.to_datetime函数 #读取数据 import pandas as pd data = pd.read_csv('police.csv') #将stop_date转化为datetime的格式的dataframe,存到stop_datetime data['stop_datetime'] = pd.to_datetime(data.stop_date') #自定义一个时间,计算时间差 data_new = pd.to_datetime('2006-01-01') data['time

python+pandas+时间、日期以及时间序列处理方法

先简单的了解下日期和时间数据类型及工具 python标准库包含于日期(date)和时间(time)数据的数据类型,datetime.time以及calendar模块会被经常用到. datetime以毫秒形式存储日期和时间,datetime.timedelta表示两个datetime对象之间的时间差. 给datetime对象加上或减去一个或多个timedelta,会产生一个新的对象 from datetime import datetime from datetime import timedel

pandas的to_datetime时间转换使用及学习心得

前言 昨天在网赛中做了一道题,虽然是外国人的Englis题目,但是内容很有学习的价值,值得仔细的学习,今天就把我所收获的一部分记录下来.其一:做个学习的资料记录.其二:分享出来,供大家参考. (收获了对处理大数据的又一次认识!!!) 这是一道将DataFrame的日期数据转换为python能认识的题目.这里重点讲一下to_datetime的部分使用. 首先说一下: 1/17/07 has the format "%m/%d/%y" 17-1-2007 has the format &q

pandas 时间格式转换的实现

OUTLINE  常见的时间字符串与timestamp之间的转换 日期与timestamp之间的转换 常见的时间字符串与timestamp之间的转换 这里说的字符串不是一般意义上的字符串,是指在读取日期类型的数据时,如果还没有及时解析字符串,它就还不是日期类型,那么此时的字符串该怎么与时间戳之间进行转换呢? ① 时间字符串转化成时间戳将时间字符串转化成时间戳分为两步: 第一步:将时间字符串转换成时间元组 第二步:将时间元组转换成时间戳类型 import time data['timestamp'

对pandas中时间窗函数rolling的使用详解

在建模过程中,我们常常需要需要对有时间关系的数据进行整理.比如我们想要得到某一时刻过去30分钟的销量(产量,速度,消耗量等),传统方法复杂消耗资源较多,pandas提供的rolling使用简单,速度较快. 函数原型和参数说明 DataFrame.rolling(window, min_periods=None, freq=None, center=False, win_type=None, on=None, axis=0, closed=None) window:表示时间窗的大小,注意有两种形式

python pandas 对时间序列文件处理的实例

如下所示: import pandas as pd from numpy import * import matplotlib.pylab as plt import copy def read(filename): dat=pd.read_csv(filename,iterator=True) loop = True chunkSize = 1000000 R=[] while loop: try: data = dat.get_chunk(chunkSize) data=data.loc[:

pandas的object对象转时间对象的方法

如下所示: df = pd.read_table('G:/tc/dataset/user_view.txt', sep=",")#读取文件 df.columns = ["a", "b", "c"]#列命名 df['c'] = pd.to_datetime(df['c'],format='%Y-%m-%d %H:%M:%S')#将读取的日期转为datatime格式 x=[i.year for i in df["c&qu

利用numpy和pandas处理csv文件中的时间方法

环境:numpy,pandas,python3 在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理. date (UTC) Price 01/01/2015 0:00 48.1 01/01/2015 1:00 47.33 01/01/2015 2:00 42.27 #coding:utf-8 import datetime import pandas as

使用pandas读取csv文件的指定列方法

根据教程实现了读取csv文件前面的几行数据,一下就想到了是不是可以实现前面几列的数据.经过多番尝试总算试出来了一种方法. 之所以想实现读取前面的几列是因为我手头的一个csv文件恰好有后面几列没有可用数据,但是却一直存在着.原来的数据如下: GreydeMac-mini:chapter06 greyzhang$ cat data.csv 1,name_01,coment_01,,,, 2,name_02,coment_02,,,, 3,name_03,coment_03,,,, 4,name_04

使用NumPy和pandas对CSV文件进行写操作的实例

数组存储成CSV之类的区隔型文件: 下面代码给随机数生成器指定种子,并生成一个3*4的NumPy数组 将一个数组元素的值设为NaN: In [26]: import numpy as np In [27]: np.random.seed(42) In [28]: a = np.random.randn(3,4) In [29]: a[2][2] = np.nan In [30]: print(a) [[ 0.49671415 -0.1382643 0.64768854 1.52302986] [

Python使用Pandas对csv文件进行数据处理的方法

今天接到一个新的任务,要对一个140多M的csv文件进行数据处理,总共有170多万行,尝试了导入本地的MySQL数据库进行查询,结果用Navicat导入直接卡死....估计是XAMPP套装里面全默认配置的MySQL性能不给力,又尝试用R搞一下吧结果发现光加载csv文件就要3分钟左右的时间,相当不给力啊,翻了翻万能的知乎发现了Python下的一个神器包:Pandas(熊猫们?),加载这个140多M的csv文件两秒钟就搞定,后面的分类汇总等操作也都是秒开,太牛逼了!记录一下这次数据处理的过程: 使用

Pandas操作CSV文件的读写实现方法

(1).导库 import pandas as pd from pandas import Series (2).读取csv文件的两种方式 #读取csv文件的两种方式 f = open('E:/建模/第5周/data/ex1.csv') #方法一 df = pd.read_csv(f) print(df) f.close f = open('E:/建模/第5周/data/ex1.csv') #方法二,必须指定分隔符为',',否则会读取失败 df = pd.read_table(f,sep=','

Python 3.x读写csv文件中数字的方法示例

前言 本文主要给大家介绍了关于Python3.x读写csv文件中数字的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 读写csv文件 读文件时先产生str的列表,把最后的换行符删掉:然后一个个str转换成int ## 读写csv文件 csv_file = 'datas.csv' csv = open(csv_file,'w') for i in range(1,20): csv.write(str(i) + ',') if i % 10 == 0: csv.write

解决Python中pandas读取*.csv文件出现编码问题

1.问题 在使用Python中pandas读取csv文件时,由于文件编码格式出现以下问题: Traceback (most recent call last): File "pandas\_libs\parsers.pyx", line 1134, in pandas._libs.parsers.TextReader._convert_tokens File "pandas\_libs\parsers.pyx", line 1240, in pandas._libs

利用Python如何将数据写到CSV文件中

前言 我们从网上爬取数据,最后一步会考虑如何存储数据.如果数据量不大,往往不会选择存储到数据库,而是选择存储到文件中,例如文本文件.CSV 文件.xls 文件等.因为文件具备携带方便.查阅直观. Python 作为胶水语言,搞定这些当然不在话下.但在写数据过程中,经常因数据源中带有中文汉字而报错.最让人头皮发麻的编码问题. 我先说下编码相关的知识.编码方式有很多种:UTF-8, GBK, ASCII 等. ASCII 码是美国在上个世纪 60 年代制定的一套字符编码.主要是规范英语字符和二进制位

python:pandas合并csv文件的方法(图书数据集成)

数据集成:将不同表的数据通过主键进行连接起来,方便对数据进行整体的分析. 两张表:ReaderInformation.csv,ReaderRentRecode.csv ReaderInformation.csv: ReaderRentRecode.csv: pandas读取csv文件,并进行csv文件合并处理: # -*- coding:utf-8 -*- import csv as csv import numpy as np # ------------- # csv读取表格数据 # ---

利用pandas进行大文件计数处理的方法

Pandas读取大文件 要处理的是由探测器读出的脉冲信号,一组数据为两列,一列为时间,一列为脉冲能量,数据量在千万级,为了有一个直接的认识,先使用Pandas读取一些 import pandas as pd data = pd.read_table('filename.txt', iterator=True) chunk = data.get_chunk(5) 而输出是这样的: Out[4]: 332.977889999979 -0.0164794921875 0 332.97790 -0.02