Python中的lambda和apply用法及说明

目录
  • 1 lambda
    • 1.1 举最简单的例子
    • 1.2 再举一个普通的例子
  • 2 Apply
    • 2.1 举例
    • 2.2 下面的例子是DataFrame中apply的用法
  • 总结

1 lambda

lambda原型为:lambda 参数:操作(参数)

lambda函数也叫匿名函数,即没有具体名称的函数,它允许快速定义单行函数,可以用在任何需要函数的地方。这区别于def定义的函数。

lambda与def的区别:

1)def创建的方法是有名称的,而lambda没有。

2)lambda会返回一个函数对象,但这个对象不会赋给一个标识符,而def则会把函数对象赋值给一个变量(函数名)。

3)lambda只是一个表达式,而def则是一个语句。

4)lambda表达式” : “后面,只能有一个表达式,def则可以有多个。

5)像if或for或print等语句不能用于lambda中,def可以。

6)lambda一般用来定义简单的函数,而def可以定义复杂的函数。

1.1 举最简单的例子

#单个参数的:
g = lambda x : x ** 2
print g(3)
"""
9
"""
#多个参数的:
g = lambda x, y, z : (x + y) ** z
print g(1,2,2)
"""
9
"""

1.2 再举一个普通的例子

将一个 list 里的每个元素都平方:

map( lambda x: x*x, [y for y in range(10)] )

这个写法要好过

def sq(x):
    return x * x
 
map(sq, [y for y in range(10)])

因为后者多定义了一个(污染环境的)函数,尤其如果这个函数只会使用一次的话。

进一步讲,匿名函数本质上就是一个函数,它所抽象出来的东西是一组运算。这是什么意思呢?类比

a = [1, 2, 3]

f = lambda x : x + 1

我们会发现,等号右边的东西完全可以脱离等号左边的东西而存在,等号左边的名字只是右边之实体的标识符。如果能习惯 [1, 2, 3] 单独存在,那么 lambda x : x + 1 也能单独存在其实也就不难理解了,它的意义就是给「某个数加一」这一运算本身。

现在回头来看 map() 函数,它可以将一个函数映射到一个可枚举类型上面。沿用上面给出的 a 和 f,可以写

map(f, a)

也就是将函数 f 依次套用在 a 的每一个元素上面,获得结果 [2, 3, 4]。现在用 lambda 表达式来替换 f,就变成:

map( lambda x : x + 1, [1, 2, 3] )

会不会觉得现在很一目了然了?尤其是类比

a = [1, 2, 3]
r = []
for each in a:
    r.append(each+1)

2 Apply

Python中apply函数的格式为:apply(func,*args,**kwargs)

当然,func可以是匿名函数。

用途:当一个函数的参数存在于一个元组或者一个字典中时,用来间接的调用这个函数,并将元组或者字典中的参数按照顺序传递给参数

解析:args是一个包含按照函数所需参数传递的位置参数的一个元组,简单来说,假如A函数的函数位置为 A(a=1,b=2),那么这个元组中就必须严格按照这个参数的位置顺序进行传递(a=3,b=4),而不能是(b=4,a=3)这样的顺序。kwargs是一个包含关键字参数的字典,而其中args如果不传递,kwargs需要传递,则必须在args的位置留空。

apply的返回值就是函数func函数的返回值。

2.1 举例

   def function(a,b):  
        print(a,b)  
    apply(function,('good','better'))  
    apply(function,(2,3+6))  
    apply(function,('cai','quan'))  
    apply(function,('cai',),{'b':'caiquan'})  
    apply(function,(),{'a':'caiquan','b':'Tom'})  

输出结果:

('good', 'better')
(2, 9)
('cai', 'quan')
('cai', 'caiquan')
('caiquan', 'Tom')

有时候,函数的参数可能是DataFrame中的行或者列。

2.2 下面的例子是DataFrame中apply的用法

#函数应用和映射
import numpy as np
import pandas as pd
df=pd.DataFrame(np.random.randn(4,3),columns=list('bde'),index=['utah','ohio','texas','oregon'])
print(df)
"""
               b         d         e
utah   -0.667969  1.974801  0.738890
ohio   -0.896774 -0.790914  0.474183
texas   0.043476  0.890176 -0.662676
oregon  0.701109 -2.238288 -0.154442
"""
 
#将函数应用到由各列或行形成的一维数组上。DataFrame的apply方法可以实现此功能
f=lambda x:x.max()-x.min()
#默认情况下会以列为单位,分别对列应用函数
t1=df.apply(f)
print(t1)
t2=df.apply(f,axis=1)
print(t2)
 
"""
b    1.597883
d    4.213089
e    1.401566
dtype: float64
utah      2.642770
ohio      1.370957
texas     1.552852
oregon    2.939397
dtype: float64
"""
 
#除标量外,传递给apply的函数还可以返回由多个值组成的Series
def f(x):
    return pd.Series([x.min(),x.max()],index=['min','max'])
t3=df.apply(f)
#从运行的结果可以看出,按列调用的顺序,调用函数运行的结果在右边依次追加
print(t3)
 
"""
            b         d         e
min -0.896774 -2.238288 -0.662676
max  0.701109  1.974801  0.738890
"""
 
#元素级的python函数,将函数应用到每一个元素
#将DataFrame中的各个浮点值保留两位小数
f=lambda x: '%.2f'%x
t3=df.applymap(f)
print(t3)
"""
            b      d      e
utah    -0.67   1.97   0.74
ohio    -0.90  -0.79   0.47
texas    0.04   0.89  -0.66
oregon   0.70  -2.24  -0.15
"""
 
#注意,之所以这里用map,是因为Series有一个元素级函数的map方法。而dataframe只有applymap。
t4=df['e'].map(f)
print(t4)
 
"""
utah     0.74
ohio     0.47
texas   -0.66
oregon  -0.15
"""

总结

以上为个人经验,希望能给大家一个参考,也希望大家多多支持我们。

(0)

相关推荐

  • Python-apply(lambda x: )的使用及说明

    目录 Python-apply(lambda x: )使用 python的lambda函数 匿名函数的定义 匿名函数的应用 总结 Python-apply(lambda x: )使用 def instant_order_deal(plat, special_product, clearance_goods, new_product_instant,orders): """ :param plat: 要计算的平台 :param special_product: 特定库龄产品,其

  • python3中apply函数和lambda函数的使用详解

    目录 lambda函数 lambda是什么 lambda用法详解 lambda+map lambda+ filter lambda+ reduce 避免过度使用lambda 适合lambda的场景 总结 apply函数 lambda函数 lambda是什么 大家好,今天给大家带来的是有关于Python里面的lambda表达式详细解析.lambda在Python里面的用处很广,但说实话,我个人认为有关于lambda的讨论不是如何使用的问题,而是该不该用的问题.接下来还是通过大量实例和大家分享我的学

  • Python lambda函数使用方法深度总结

    目录 什么是 Python 中的 Lambda 函数 Python 中的 Lambda 函数如何工作 Lambda 函数在 Python 中的应用 带有 filter() 函数的 Lambda 带有 map() 函数的 Lambda 带有 reduce() 函数的 Lambda Python 中 Lambda 函数的优缺点 优点 缺点 总结 今天我们来学习 Python 中的 lambda 函数,并探讨使用它的优点和局限性 Let's do it! 什么是 Python 中的 Lambda 函数

  • Python中的lambda和apply用法及说明

    目录 1 lambda 1.1 举最简单的例子 1.2 再举一个普通的例子 2 Apply 2.1 举例 2.2 下面的例子是DataFrame中apply的用法 总结 1 lambda lambda原型为:lambda 参数:操作(参数) lambda函数也叫匿名函数,即没有具体名称的函数,它允许快速定义单行函数,可以用在任何需要函数的地方.这区别于def定义的函数. lambda与def的区别: 1)def创建的方法是有名称的,而lambda没有. 2)lambda会返回一个函数对象,但这个

  • 深入解析Python中的lambda表达式的用法

    普通的数学运算用这个纯抽象的符号演算来定义,计算结果只能在脑子里存在.所以写了点代码,来验证文章中介绍的演算规则. 我们来验证文章里介绍的自然数及自然数运算规则.说到自然数,今天还百度了一下,据度娘说,1993年后国家规定0是属于自然数.先定义自然数及自然数的运算规则: 用lambda表达式定义自然数(邱齐数) 0 := λf.λx.x 1 := λf.λx.f x 2 := λf.λx.f (f x) 3 := λf.λx.f (f (f x)) ... 上面定义直观的意思就是数字n, 是f(

  • 简单谈谈python中的lambda表达式

    最近在coding时发现使用lambda还是有诸多优点的,很多时候代码更整洁,更pythonic,所以在此简单总结一下 1.lambda是什么 举个简单的例子: func = lambda x: x*x def func(x): return x*x 两个func的定义是完全相同的,那两种函数定义方法配合map使用,将list中所有元素求平方,代码会是什么样的, def func(x): return x*x map(func, [i for i in range(10)]) map(lambd

  • python中的lambda表达式用法详解

    本文实例讲述了python中的lambda表达式用法.分享给大家供大家参考,具体如下: 这里来为大家介绍一下lambda函数. lambda 函数是一种快速定义单行的最小函数,是从 Lisp 借用来的,可以用在任何需要函数的地方 .下面的例子比较了传统的函数定义def与lambda定义方式: >>> def f ( x ,y): ... return x * y ... >>> f ( 2,3 ) 6 >>> g = lambda x ,y: x *

  • Python中使用Lambda函数的5种用法

    引言 Lambda 函数(也称为匿名函数)是函数式编程中的核心概念之一. 支持多编程范例的 Python 也提供了一种简单的方法来定义 lambda 函数. 用 Python 编写 lambda 函数的模板是: lambda arguments : expression 它包括三个部分: · Lambda 关键字 · 函数将接收的参数 · 结果为函数返回值的表达式 由于它的简单性,lambda 函数可以使我们的 Python 代码在某些使用场景中更加优雅.这篇文章将演示在 Python 中 la

  • 对python过滤器和lambda函数的用法详解

    1. 过滤器 Python 具有通过列表解析 将列表映射到其它列表的强大能力.这种能力同过滤机制结合使用,使列表中的有些元素被映射的同时跳过另外一些元素. 过滤列表语法: [ mapping-expression for element in source-list if filter-expression ] 这是列表解析的扩展,前三部分都是相同的,最后一部分,以 if开头的是过滤器表达式.过滤器表达式可以是返回值为真或者假的任何表达式 (在 Python 中是几乎任何东西).任何经过滤器表达

  • Python中flatten( )函数及函数用法详解

    flatten()函数用法 flatten是numpy.ndarray.flatten的一个函数,即返回一个一维数组. flatten只能适用于numpy对象,即array或者mat,普通的list列表不适用!. a.flatten():a是个数组,a.flatten()就是把a降到一维,默认是按行的方向降 . a.flatten().A:a是个矩阵,降维后还是个矩阵,矩阵.A(等效于矩阵.getA())变成了数组.具体看下面的例子: 1.用于array(数组)对象 >>> from n

  • Python中关于函数的具体用法范例以及介绍

    目录 1.函数的介绍 2.函数的定义和调用 3.函数的参数 4.参数的分类 4.1.位置参数 4.2.关键字参数 4.3.缺省参数 4.4.不定长参数 1.不定长参数*args 2.不定长参数* * kwargs 4.5.函数位置顺序 4.6.函数的返回值 1.多个return 2.返回多个数据 4.7.函数的类型 1.无参数,无返回值的函数 2.无参数,有返回值的函数 3.有参数,无返回值的函数 4.有参数,有返回值的函数 4.8.函数的嵌套 4.9.匿名函数 5.函数小练习 1.函数的介绍

  • Python中的is和id用法分析

    本文实例讲述了Python中的is和id用法.分享给大家供大家参考.具体分析如下: (ob1 is ob2) 等价于 (id(ob1) == id(ob2)) 首先id函数可以获得对象的内存地址,如果两个对象的内存地址是一样的,那么这两个对象肯定是一个对象.和is是等价的.Python源代码为证. 复制代码 代码如下: static PyObject *  cmp_outcome(int op, register PyObject *v, register PyObject *w) {  int

  • python中enumerate函数遍历元素用法分析

    本文实例讲述了python中enumerate函数遍历元素用法.分享给大家供大家参考,具体如下: enumerate函数用于遍历序列中的元素以及它们的下标 示例代码如下: i = 0 seq = ['one', 'two', 'three'] for element in seq: print i, seq[i] i += 1 #0 one #1 two #2 three print '============' seq = ['one', 'two', 'three'] for i, elem

随机推荐