Android 使用压缩纹理的方案

目录
  • 一、压缩纹理概念
  • 二、OpenGL 接口
    • 1.glCompressedTexImage2D
    • 2.判断压缩纹理是否支持
  • 三、压缩纹理加载
    • 1.ETC1
    • 2.ETC2
    • 3.ASTC
  • 四、总结

本文介绍了什么是压缩纹理,以及加载压缩纹理的核心步骤。并在 Android OpenGLES 平台上实现了压缩纹理的显示。

一、压缩纹理概念

传统的图片文件格式有 PNG 、 JPEG 等,这种类型的图片格式无法直接被 GPU 读取,需要先经过 CPU 解码后再上传到 GPU 使用,解码后的数据以 RGB(A) 形式存储,无压缩。

纹理压缩顾名思义是一种压缩的纹理格式,它通常会将纹理划分为固定大小的块(block)或者瓦片(tile),每个块单独进行压缩,整体显存占用更低,并且能直接被 GPU 读取和渲染(无需 CPU 解码)。

纹理压缩支持随机访问,随机访问是很重要的特性,因为纹理访问的模式高度随机,只有在渲染时被用到的部分才需要访问到,且无法提前预知其顺序。而且在场景中相邻的像素在纹理中不一定是相邻的 ,因此图形渲染性能高度依赖于纹理访问的效率。综上,相比普通格式图片,纹理压缩可以节省大量显存和 CPU 解码时间,且对 GPU 友好。

二、OpenGL 接口

想要使用 OpenGL 加载压缩纹理,只需要了解一个接口:glCompressedTexImage2D

1.glCompressedTexImage2D

接口声明如下,注释里说明了各参数的含义:

void glCompressedTexImage2D (GLenum target,
                             GLint level,
                             GLenum internalformat, // 格式
                             GLsizei width,  // 纹理宽度
                             GLsizei height, // 纹理高度
                             GLint border,
                             GLsizei imageSize, // 纹理数据大小
                             const void *data) // 纹理数据

所以加载一个压缩纹理,主要有以下几个要点:

  • 获取到压缩纹理存储格式
  • 获取压缩纹理的大小
  • 获取压缩纹理的图像大小

2.判断压缩纹理是否支持

有的设备可能不支持压缩纹理,使用前需要进行判断。

std::string extensions = (const char*)glGetString(GL_EXTENSIONS);
if (extensions.find("GL_OES_compressed_ETC1_RGB8_texture")!= string::npos) {
 // 支持 ETC1 纹理
}

if (extensions.find("GL_OES_texture_compression_astc") != std::string::npos) {
 // 支持 ASTC 纹理
}

三、压缩纹理加载

为了方便描述,定义了一个压缩纹理的结构体:

// 压缩纹理相关信息
struct CompressedTextureInfo {
 bool is_valid; // 是否为一个有效的压缩纹理信息
 GLsizei width;
 GLsizei height;
 GLsizei size;
 GLenum internal_format;
 GLvoid *data;
};

下面介绍ETC1、ETC2和ASTC格式的压缩纹理如何解析成CompressedTextureInfo对象。

1.ETC1

ETC1格式是OpenGL ES图形标准的一部分,并且被所有的Android设备所支持。
扩展名为: GL_OES_compressed_ETC1_RGB8_texture,不支持透明通道,所以仅能用于不透明纹理。且要求大小是2次幂。
当加载压缩纹理时,参数支持如下格式: GL_ETC1_RGB8_OES(RGB,每个像素0.5个字节)
ETC1 压缩纹理的加载,主要参考了Android源码:etc1.cpp
解析 ETC1 纹理:

// 解析 ETC1 纹理
static const CompressedTextureInfo ParseETC1Texture(unsigned char* data) {
    CompressedTextureInfo textureInfo;
    textureInfo.is_valid = false;
    const etc1::etc1_byte *header = data;
    if (!etc1::etc1_pkm_is_valid(header)) {
        LogE("LoadTexture: etc1_pkm is not valid");
        return textureInfo;
    }
    unsigned int width = etc1::etc1_pkm_get_width(header);
    unsigned int height = etc1::etc1_pkm_get_height(header);
    GLuint size = 8 * ((width + 3) >> 2) * ((height + 3) >> 2);
    GLvoid *texture_data = data + ETC1_PKM_HEADER_SIZE;
    textureInfo.is_valid = true;
    textureInfo.width = width;
    textureInfo.height = height;
    textureInfo.size = size;
    textureInfo.internal_format = GL_ETC1_RGB8_OES;
    textureInfo.data = texture_data;
    return textureInfo;
}

2.ETC2

ETC2 是 ETC1 的扩展,压缩比率一样,但压缩质量更高,而且支持透明通道,能完整存储 RGBA 信息。ETC2 需要 OpenGL ES 3.0(对应 WebGL 2.0)环境,目前还有不少低端 Android 手机不兼容,iOS 方面从 iPhone5S 开始都支持 OpenGL ES 3.0。ETC2 和 ETC1 一样,长宽可以不相等,但要求是 2 的幂次方。

首先定义好 ETC2 的 Header:

// etc2_texture.h
class Etc2Header {
public:
    Etc2Header(const unsigned char *data);
    unsigned short getWidth(void) const;
    unsigned short getHeight(void) const;
    unsigned short getPaddedWidth(void) const;
    unsigned short getPaddedHeight(void) const;
    GLsizei getSize(GLenum internalFormat) const;

private:
    unsigned char paddedWidthMSB;
    unsigned char paddedWidthLSB;
    unsigned char paddedHeightMSB;
    unsigned char paddedHeightLSB;
    unsigned char widthMSB;
    unsigned char widthLSB;
    unsigned char heightMSB;
    unsigned char heightLSB;
};

// etc2_texture.cpp
Etc2Header::Etc2Header(const unsigned char *data) {
    paddedWidthMSB  = data[8];
    paddedWidthLSB  = data[9];
    paddedHeightMSB = data[10];
    paddedHeightLSB = data[11];
    widthMSB        = data[12];
    widthLSB        = data[13];
    heightMSB       = data[14];
    heightLSB       = data[15];
}

unsigned short Etc2Header::getWidth() const {
    return (widthMSB << 8) | widthLSB;
}

unsigned short Etc2Header::getHeight() const {
    return (heightMSB << 8) | heightLSB;
}

unsigned short Etc2Header::getPaddedWidth() const {
    return (paddedWidthMSB << 8) | paddedWidthLSB;
}

unsigned short Etc2Header::getPaddedHeight() const {
    return (paddedHeightMSB << 8) | paddedHeightLSB;
}

GLsizei Etc2Header::getSize(GLenum internalFormat) const {
    if (internalFormat != GL_COMPRESSED_RG11_EAC
        && internalFormat != GL_COMPRESSED_SIGNED_RG11_EAC
        && internalFormat != GL_COMPRESSED_RGBA8_ETC2_EAC
        && internalFormat != GL_COMPRESSED_SRGB8_ALPHA8_ETC2_EAC) {
        return (getPaddedWidth() * getPaddedHeight()) >> 1;
    }
    return (getPaddedWidth() * getPaddedHeight());
}

解析 ETC2 数据:

// ETC2 魔数
static const char kMagic[] = { 'P', 'K', 'M', ' ', '2', '0' };

static const bool IsEtc2Texture(unsigned char *data) {
    return memcmp(data, kMagic, sizeof(kMagic)) == 0;
}

static const CompressedTextureInfo ParseETC2Texture(unsigned char *data, GLenum internal_format) {
    CompressedTextureInfo textureInfo;
    textureInfo.is_valid = false;
    if (!IsEtc2Texture(data)) {
        LogE("ParseETC2Texture: not a etc2 texture");
        return textureInfo;
    }
    Etc2Header etc2Header(data);
    textureInfo.is_valid = true;
    textureInfo.width = etc2Header.getWidth();
    textureInfo.height = etc2Header.getHeight();
    textureInfo.size = etc2Header.getSize(internal_format);
    textureInfo.internal_format = internal_format;
    textureInfo.data = data + ETC2_PKM_HEADER_SIZE;
    return textureInfo;
}

3.ASTC

由ARM & AMD研发。ASTC同样是基于block的压缩方式,但块的大小却较支持多种尺寸,比如从基本的4x4到12x12;每个块内的内容用128bits来进行存储,因而不同的块就对应着不同的压缩率;相比ETC,ASTC不要求长宽是2的幂次方。

// ASTC 魔数
const unsigned char ASTC_MAGIC_NUMBER[] = {0x13, 0xAB, 0xA1, 0x5C};

// ASTC header declaration
typedef struct
{
    unsigned char  magic[4];
    unsigned char  blockdim_x;
    unsigned char  blockdim_y;
    unsigned char  blockdim_z;
    unsigned char  xsize[3];   /* x-size = xsize[0] + xsize[1] + xsize[2] */
    unsigned char  ysize[3];   /* x-size, y-size and z-size are given in texels */
    unsigned char  zsize[3];   /* block count is inferred */
} AstcHeader;

static const bool IsAstcTexture(unsigned char* buffer) {
    return memcmp(buffer, ASTC_MAGIC_NUMBER, sizeof(ASTC_MAGIC_NUMBER)) == 0;
}

static const CompressedTextureInfo ParseAstcTexture(unsigned char *data, GLenum internal_format) {
    CompressedTextureInfo textureInfo;
    textureInfo.is_valid = false;
    if (internal_format < GL_COMPRESSED_RGBA_ASTC_4x4_KHR
        || internal_format > GL_COMPRESSED_SRGB8_ALPHA8_ASTC_12x12_KHR) {
        LogE("parseAstcTexture: invalid internal_format=%d", internal_format);
        return textureInfo;
    }

    if (!IsAstcTexture(data)) {
        LogE("parseAstcTexture: not a astc file.");
        return textureInfo;
    }
    // 映射为 ASTC 头
    AstcHeader* astc_data_ptr = (AstcHeader*) data;

    int x_size = astc_data_ptr->xsize[0] + (astc_data_ptr->xsize[1] << 8) + (astc_data_ptr->xsize[2] << 16);
    int y_size = astc_data_ptr->ysize[0] + (astc_data_ptr->ysize[1] << 8) + (astc_data_ptr->ysize[2] << 16);
    int z_size = astc_data_ptr->zsize[0] + (astc_data_ptr->zsize[1] << 8) + (astc_data_ptr->zsize[2] << 16);

    int x_blocks = (x_size + astc_data_ptr->blockdim_x - 1) / astc_data_ptr->blockdim_x;
    int y_blocks = (y_size + astc_data_ptr->blockdim_y - 1) / astc_data_ptr->blockdim_y;
    int z_blocks = (z_size + astc_data_ptr->blockdim_z - 1) / astc_data_ptr->blockdim_z;

    unsigned int n_bytes_to_read = x_blocks * y_blocks * z_blocks << 4;

    textureInfo.is_valid = true;
    textureInfo.internal_format = internal_format;
    textureInfo.width = x_size;
    textureInfo.height = y_size;
    textureInfo.size = n_bytes_to_read;
    textureInfo.data = data;
    return textureInfo;
}

得到CompressedTextureInfo对象后,即可进行压缩纹理的显示了:

CompressedTextureInfo textureInfo = etc1::ParseETC1Texture(input_data);
if (!textureInfo.is_valid) {
    LogE("LoadTexture: etc1 textureInfo parsed invalid.");
}
GLuint texture_id = 0;
glGenTextures(1, &texture_id);
glBindTexture(GL_TEXTURE_2D, texture_id);
glCompressedTexImage2D(GL_TEXTURE_2D,
                       0,
                       textureInfo.internal_format,
                       textureInfo.width,
                       textureInfo.height,
                       0,
                       textureInfo.size,
                       textureInfo.data);

四、总结

压缩纹理的加载,主要是搞清楚如何解析压缩纹理数据。一般而言,压缩纹理加载到内存后,都有一个 Header,通过 Header 可以解析出其宽高等信息,计算出纹理图像大小。最后调用glCompressedTexImage2D方法即可渲染。
可见压缩纹理完全没有图像的解码工作,大大提升加载速度。

最后,介绍几款纹理压缩工具:

  • etc2comp:支持生成etc2纹理
  • etc1tool:支持生成etc1纹理,在Android SDK目录下,Android/sdk/platform-tools/etc1tool
  • ISPCTextureCompressor:支持etc1、astc等
  • astc-encoder:ASTC官方编码器

到此这篇关于Android 使用压缩纹理的文章就介绍到这了,更多相关Android压缩纹理内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Android实现文件或文件夹压缩成.zip格式压缩包

    本文实例为大家分享了Android压缩文件和文件夹的方法,供大家参考,具体内容如下 /** * 压缩文件和文件夹 * * @param srcFileString 要压缩的文件或文件夹 * @param zipFileString 压缩完成的Zip路径 * @throws Exception */ public static void ZipFolder(String srcFileString, String zipFileString) throws Exception { //创建ZIP

  • Android三种常见的图片压缩方式

    下面就为大家带来3种比较常见的压缩方式 先给出一组数据 原图:width:2976; height:2976 原图实际:--->byte:2299820 Mb:2.19328 质量压缩 size--->:byte:1599831 kb:1562.33496 按比例压缩 size--->:byte:191707 kb:187.21387 鲁班压缩 size--->:byte:143792 kb:140.42188 压缩效果:鲁班压缩 > 按比例压缩 > 质量压缩 1.质量

  • Android本地视频压缩方案的示例代码

    前言 本文讨论的不是类似秒拍的短视频录制,而是用户选择本地一个现有视频,压缩后上传.秒拍的实现其实是自定义视频录制功能,从而控制录制时长,分辨率,码率等,生成体积很小的视频再上传.而我们则没办法控制原视频的参数,可能是一个很大的视频需要压缩处理. 思路 利用ffmpeg对视频转码,通过设定参数生成分辨率和码率更小的视频,实现压缩.当然,ffmpeg的功能远不止如此,这是一个很大的专题. 用到的开源库:https://github.com/WritingMinds/ffmpeg-android-j

  • Android 高效图片压缩的实现

    使用libjpeg-turbo进行图片压缩 1. JEPG 是什么? 相信有一部分使用 iPhone 手机用微信发送图片的时候,明明图片大小只有 1M ,但清晰度比 Android 手机 5 M 图片大小的还要清晰,那么这是为什么呢 ?. 当时谷歌开发 Android 的时候,考虑了大部分手机的配置并没有那么高,所以对图片处理使用的是 Skia.当然这个库的底层还是用的 jpeg 图片压缩处理.但是为了能够适配低端的手机(这里的低端是指以前的硬件配置不高的手机,CPU 和内存在手机上都非常吃紧,

  • Android 使用压缩纹理的方案

    目录 一.压缩纹理概念 二.OpenGL 接口 1.glCompressedTexImage2D 2.判断压缩纹理是否支持 三.压缩纹理加载 1.ETC1 2.ETC2 3.ASTC 四.总结 本文介绍了什么是压缩纹理,以及加载压缩纹理的核心步骤.并在 Android OpenGLES 平台上实现了压缩纹理的显示. 一.压缩纹理概念 传统的图片文件格式有 PNG . JPEG 等,这种类型的图片格式无法直接被 GPU 读取,需要先经过 CPU 解码后再上传到 GPU 使用,解码后的数据以 RGB

  • Android图片压缩上传之基础篇

    在android程序开发中我们经常见到需要上传图片的场景,在这里有个技术点,需要把图片压缩处理,然后再进行上传.这样可以减少流量的消耗,提高图片的上传速度等问题. 关于android如何压缩,网上的资料也是很多,但大多数都是代码片段,讲解压缩步骤,而没有一个实用的工具类库.那么如何将压缩算法封装成一个实用工具库呢?其中会遇到些什么问题,比如: 1.需要压缩的图片有多少 2.压缩后的图片是覆盖还是保存到另外的目录 3.如果是另存目录需要将原始图片删除吗 4.如果改变压缩后的图片的尺寸大小是按照原图

  • Android不压缩图片实现高清加载巨图实例

    目录 一.概述 二.初识BitmapRegionDecoder 三.自定义显示大图控件 四.测试 参考链接 一.概述 对于加载图片,大家都不陌生,一般为了尽可能避免OOM都会按照如下做法: 对于图片显示:根据需要显示图片控件的大小对图片进行压缩显示.如果图片数量非常多:则会使用LruCache等缓存机制,将所有图片占据的内容维持在一个范围内. 其实对于图片加载还有种情况,就是单个图片非常巨大,并且还不允许压缩.比如显示:世界地图.清明上河图.微博长图等. 那么对于这种需求,该如何做呢? 首先不压

  • android图片压缩的3种方法实例

    android 图片压缩方法: 第一:质量压缩法: 复制代码 代码如下: private Bitmap compressImage(Bitmap image) { ByteArrayOutputStream baos = new ByteArrayOutputStream();        image.compress(Bitmap.CompressFormat.JPEG, 100, baos);//质量压缩方法,这里100表示不压缩,把压缩后的数据存放到baos中        int op

  • Android WebView 常见问题及处理方案

    目前html5发展非常迅速,很多native app都会嵌入到网页中,以此来适用多变的市场需求.但是android的webview默认支持的功能非常弱,很多地方都是需要自定义的,才能达到我们想要的效果.并且webview在不同的版本会有不同程度的bug.下面小编把webview经常出现的问题给大家整理如下: 1.为WebView自定义错误显示界面: /** * 显示自定义错误提示页面,用一个View覆盖在WebView */ protected void showErrorPage() { Li

  • Android Bitmap压缩方式分析

    Android Bitmap压缩方式分析 在网上调查了图片压缩的方法并实装后,大致上可以认为有两类压缩:质量压缩(不改变图片的尺寸)和尺寸压缩(相当于是像素上的压缩):质量压缩一般可用于上传大图前的处理,这样就可以节省一定的流量,毕竟现在的手机拍照都能达到3M左右了,尺寸压缩一般可用于生成缩略图. 在Android开发中我们都会遇到在一个100*100的ImageView上显示一张过大的图片,如果直接把这张图片显示上去对我们应用没有一点好处反而存在OOM的危险,所以我们有必要采用一种有效压缩方式

  • Android 动画实现几种方案

    Android 动画实现几种方案 在 Android 的 FrameWork 中,为我们提供三种动画的实现方式:逐帧(Frame)动画.视图/补间动画(View Animation)和属性动画(Property Animation).由于,这三种动画的实现方式和针对面不一样,应用的范围也有所区别,因此我们需要根据具体的需求来选择正确动画类型. 根据 SDK 中的描述,这三者的功能强大程度为:逐帧动画 < 视图动画 < 属性动画. 一.逐帧动画(Frame Animation) 该动画的方式就是

  • Android图片压缩(质量压缩和尺寸压缩)

    在网上调查了图片压缩的方法并实装后,大致上可以认为有两类压缩:质量压缩(不改变图片的尺寸)和尺寸压缩(相当于是像素上的压缩):质量压缩一般可用于上传大图前的处理,这样就可以节省一定的流量,毕竟现在的手机拍照都能达到3M左右了,尺寸压缩一般可用于生成缩略图. 两种方法都实装在了我的项目中,结果却发现在质量压缩的模块中,本来1.9M的图片压缩后反而变成3M多了,很是奇怪,再做了进一步调查终于知道原因了.下面这个博客说的比较清晰: android图片压缩总结 总 结来看,图片有三种存在形式:硬盘上时是

  • Android图片压缩方法并压缩到指定大小

    一.图片质量压缩 /** * 质量压缩方法 * @param image * @return */ public static Bitmap compressImage(Bitmap image) { ByteArrayOutputStream baos = new ByteArrayOutputStream(); image.compress(Bitmap.CompressFormat.JPEG, 100, baos);// 质量压缩方法,这里100表示不压缩,把压缩后的数据存放到baos中

  • Android图片压缩的实例详解

    Android图片压缩的实例详解 在做微信分享的时候,由于分享的缩略图要求不得大于32K,否则不能调起微信,所以总结了一下Android图片的压缩问题,大部分资料都是来自网上各位的分享,自己只是完善或修改了一下,本着继续分享的精神,也方便自己记忆,于是总结如下. android图片压缩主要有两种方式:1.压缩图片分辨率 2.压缩图片质量 一.先看压缩图片分辨率,很好理解,如本来1280*768的图片压缩为640*384大小.废话不说,直接上代码: /** * 按比例压缩图片分辨率 * @para

随机推荐