Pandas 类型转换astype()的实现

Python中和Pandas中数据类型对应关系如下:

  • 果数据是纯净的数据,可以转化为数字
  • astype基本也就是两种用作,数字转化为单纯字符串,单纯数字的字符串转化为数字,含有其他的非数字的字符串是不能通过astype进行转化的。
  • 需要引入其他的方法进行转化,也就有了下面的自定义函数方法

astype()是最常见也是最通用的数据类型转换方法

import pandas as pd

df = pd.DataFrame([['liver','E',89,21,24,64],
                   ['Arry','C',36,37,37,57],
                   ['Ack','A',57,60,18,84],
                   ['Eorge','C',93,96,71,78],
                   ['Oah','D',65,49,61,86]
                  ],
                   columns = ['name','team','Q1','Q2','Q3','Q4'])

res = df.dtypes

df.Q1.astype('int32').dtypes # dtype('int32')
df.astype({'Q1':'int32','Q2':'int32'}).dtypes

结果展示

df

res

扩展

# 以下是一些使用示例:
df.index.astype('int64') # 索引类型转换
df.astype('int32') # 所有数据转换为int32
df.astype({'col1':'int32'}) # 指定字段转指定类型
s.astype('int64')
s.astype('int64',copy = False) # 不与原数据关联
df['name'].astype('object')
data['Q4'].astype('float')
s.astype('datatime64[ns]') # 转为时间类型
data['状态'].astype('bool')

数据类型

df.dtypes会返回每个字段的数据类型及DataFrame整体的类型

如果是Series,需要用s.dtype

import pandas as pd

df = pd.DataFrame([['liver','E',89,21,24,64],
                   ['Arry','C',36,37,37,57],
                   ['Ack','A',57,60,18,84],
                   ['Eorge','C',93,96,71,78],
                   ['Oah','D',65,49,61,86]
                  ],
                   columns = ['name','team','Q1','Q2','Q3','Q4'])
df.dtypes

s = pd.Series(['One','Two','Three'])
s.dtype

结果展示

df

s

当数据的格式不具备转换为目标类型的条件时,需要先对数据进行处理

例如“89.3%”是一个字符串,要转换为数字,要先去掉百分号:

# 将"89.3%"这样的文本转为浮点数
data.rate.apply(lambda x:x.replace('%','')).astype('float')/100

加载数据时可以指定数据各列的类型:

import pandas as pd

# 对所有字段指定统一类型
df = pd.DataFrame(data, dtype = 'float32')
# 对每个字段分别指定
df = pd.read_excel(data, dtype = {'team':'string','Q1':'int32'})

到此这篇关于Pandas 类型转换astype()的实现的文章就介绍到这了,更多相关Pandas 类型转换astype()内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • pandas 强制类型转换 df.astype实例

    废话不多说,大家还是直接看代码吧! import pandas as pd from matplotlib import pyplot as plt from datetime import datetime filename='sitka_weather_2014.csv' df=pd.read_csv(filename) print(df.dtypes) df[' Min Humidity']=df[' Min Humidity'].astype('float64') df=df.astyp

  • Pandas 类型转换astype()的实现

    Python中和Pandas中数据类型对应关系如下: 果数据是纯净的数据,可以转化为数字 astype基本也就是两种用作,数字转化为单纯字符串,单纯数字的字符串转化为数字,含有其他的非数字的字符串是不能通过astype进行转化的. 需要引入其他的方法进行转化,也就有了下面的自定义函数方法 astype()是最常见也是最通用的数据类型转换方法 import pandas as pd df = pd.DataFrame([['liver','E',89,21,24,64], ['Arry','C',

  • python数据处理之Pandas类型转换的实现

    目录 转换为字符串类型 转换为数值类型 转为数值类型还可以使用to_numeric()函数 分类数据(Category) 数据类型小结 转换为字符串类型 tips['sex_str'] = tips['sex'].astype(str) 转换为数值类型 转为数值类型还可以使用to_numeric()函数 DataFrame每一列的数据类型必须相同,当有些数据中有缺失,但不是NaN时(如missing,null等),会使整列数据变成字符串类型而不是数值型,这个时候可以使用to_numeric处理

  • Numpy数据类型转换astype,dtype的方法

    1.查看数据类型 In [11]: arr = np.array([1,2,3,4,5]) In [12]: arr Out[12]: array([1, 2, 3, 4, 5]) // 该命令查看数据类型 In [13]: arr.dtype Out[13]: dtype('int64') In [14]: float_arr = arr.astype(np.float64) // 该命令查看数据类型 In [15]: float_arr.dtype Out[15]: dtype('float

  • Pandas数据类型转换df.astype()及数据类型查看df.dtypes的使用

    目录 1.数据框字段类型查看:df.dtypes 2.维度查看df.shape: 3.数据框的策略基本信息df.info(): 4.某一列格式df['列名'].dtype: 5.数据类型转换.astype: Pandas所支持的数据类型: Python,numpy都有自己的一套数据格式,它们之间的对应关系可参考如下表格: pandas默认的数据类型是int64,float64. 1.数据框字段类型查看:df.dtypes 数据框td_link_data如下 print(td_link_data)

  • Pandas实现数据类型转换的一些小技巧汇总

    前言 Pandas是Python当中重要的数据分析工具,利用Pandas进行数据分析时,确保使用正确的数据类型是非常重要的,否则可能会导致一些不可预知的错误发生. Pandas 的数据类型:数据类型本质上是编程语言用来理解如何存储和操作数据的内部结构.例如,一个程序需要理解你可以将两个数字加起来,比如 5 + 10 得到 15.或者,如果是两个字符串,比如「cat」和「hat」,你可以将它们连接(加)起来得到「cathat」.尚学堂•百战程序员陈老师指出有关 Pandas 数据类型的一个可能令人

  • 关于numpy强制类型转换的问题

    目录 numpy强制类型转换 numpy类型强制转换api numpy数据类型转换astype,dtype 1.查看数据类型 2.转换数据类型 3.字符串数组转换为数值型 numpy强制类型转换 今天用numpy遇到一个关于类型转换的问题, import numpy as np A = np.array([1,2,3,4,5,6,7,8,9])    A[0]=3.2 print(A) # [3 2 3 4 5 6 7 8 9] 可以发现A[0]=3.2,被强制转换成整型3了.发生的原因是A的类

  • pandas 数据类型转换的实现

    数据处理过程的数据类型 当利用pandas进行数据处理的时候,经常会遇到数据类型的问题,当拿到数据的时候,首先需要确定拿到的是正确类型的数据,一般通过数据类型的转化,这篇文章就介绍pandas里面的数据类型(data types也就是常用的dtyps),以及pandas与numpy之间的数据对应关系. 主要介绍object,int64,float64,datetime64,bool等几种类型,category与timedelta两种类型会单独的在其他文章中进行介绍.当然本文中也会涉及简单的介绍.

  • Pandas时间类型转换与处理的实现示例

    目录 案例1 案例2 案例3 案例4 补充知识 案例5 案例6 案例7 案例8 案例9 案例10 在平时的需求开发中,经常涉及到利用Pandas处理日期相关类型字段的转换和操作,为此特地记录以下练习案例,帮助大家的同时,也便于日后的学习和复盘 案例1 问题: 提取'W1|2022/7/28'字段中的年月日信息,取名为week_start,即一周开始的日期,并根据week_start计算出该周结束的具体日期week_end import pandas as pd import datetime d

  • Pandas中Series的创建及数据类型转换

    目录 一.实战场景 二.主要知识点 三.菜鸟实战 1.创建 python 文件,用Numpy创建Series 2.转换Series的数据类型 四.补充 1.创建 python 文件,数据list,变成Pandas的Series对象 2.数据dict变成Pandas的Series对象 3.把Pandas的Series对象变成数据list 一.实战场景 实战场景:Pandas中Series的创建和数据类型转换,Series的创建和数据类型转换,Series 类似于一维数组与字典(map)数据结构的结

随机推荐