python openCV实现摄像头获取人脸图片

本文实例为大家分享了python openCV实现摄像头获取人脸图片的具体代码,供大家参考,具体内容如下

在机器学习中,训练模型需要大量图片,通过openCV中的库可以快捷的调用摄像头,截取图片,可以快速的获取大量人脸图片

需要注意将CascadeClassifier方法中的地址改为自己包cv2包下面的文件

import cv2

def load_img(path,name,mun = 100,add_with = 0):
 # 获取人脸识别模型
 #
 #
 #以下路径需要更改为自己环境下xml文件
 #一般在环境下的Liba\site-packages\cv2\data\haarcascade_frontalface_alt2.xml
 classfier = cv2.CascadeClassifier('F:\\pyhton\\pytonApp\\Lib\\site-packages\\cv2\\data\\haarcascade_frontalface_alt2.xml')
 #
 #
 # 创建一个窗口
 cv2.namedWindow('face')
 # 打开第一个个摄像头
 cap = cv2.VideoCapture(0)

 i = 0 # 计数
 if cap.isOpened():
  while i < mun:
   ok,frame = cap.read() # 读取一帧图片
   if not ok:
    continue

   faces = classfier.detectMultiScale(frame,1.2,3,minSize=(32,32))

   if len(faces) > 0:
    for face in faces:
     x, y, w, h = face
     cv2.rectangle(frame,(x-add_with,y-add_with), (x+w+add_with,y+h+add_with), (0,255,0), 2)
     img = frame[y-add_with:y+h+add_with,x-add_with:x+w+add_with]
     save_path = path+name+'_'+str(i)+'.jpg'
     print(save_path)
     cv2.imwrite(save_path,img)
     i += 1

   cv2.imshow('face', frame)
   c = cv2.waitKey(10)
   if c & 0xFF == ord('q'):
    break

  cap.release()
  cv2.destroyAllWindows()

if __name__ == '__main__' :
 # 第一个参数为保存图片的路径
 # 第二个参数为保存图片名字的开头
 # 第三个参数为图片的数量
 # 第四个参数可以调节图片的大小
 load_img('E:\\Screenshots\\home\\','rongdang',1000,20)

效果如下:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

时间: 2020-08-18

python使用opencv进行人脸识别

环境 ubuntu 12.04 LTS python 2.7.3 opencv 2.3.1-7 安装依赖 sudo apt-get install libopencv-* sudo apt-get install python-opencv sudo apt-get install python-numpy 示例代码 #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv d

详解如何用OpenCV + Python 实现人脸识别

下午的时候,配好了OpenCV的Python环境,OpenCV的Python环境搭建.于是迫不及待的想体验一下opencv的人脸识别,如下文. 必备知识 Haar-like 通俗的来讲,就是作为人脸特征即可. Haar特征值反映了图像的灰度变化情况.例如:脸部的一些特征能由矩形特征简单的描述,如:眼睛要比脸颊颜色要深,鼻梁两侧比鼻梁颜色要深,嘴巴比周围颜色要深等. opencv api 要想使用opencv,就必须先知道其能干什么,怎么做.于是API的重要性便体现出来了.就本例而言,使用到的函数

python+opencv实现的简单人脸识别代码示例

# 源码如下: #!/usr/bin/env python #coding=utf-8 import os from PIL import Image, ImageDraw import cv def detect_object(image): '''检测图片,获取人脸在图片中的坐标''' grayscale = cv.CreateImage((image.width, image.height), 8, 1) cv.CvtColor(image, grayscale, cv.CV_BGR2GR

Python OpenCV利用笔记本摄像头实现人脸检测

本文实例为大家分享了Python OpenCV利用笔记本摄像头实现人脸检测的具体代码,供大家参考,具体内容如下 1.安装opencv 首先参考其他文章安装pip. 之后以管理员身份运行命令提示符,输入以下代码安装opencv pip install --user opencv-python 可以使用以下代码测试安装是否成功 #导入opencv模块 import cv2 #捕捉帧,笔记本摄像头设置为0即可 capture = cv2.VideoCapture(0) #循环显示帧 while(Tru

python结合opencv实现人脸检测与跟踪

模式识别课上老师留了个实验,在VC++环境下利用OpenCV库编程实现人脸检测与跟踪. 然后就开始下载opencv和vs2012,再然后,配置了好几次还是配置不成功,这里不得不吐槽下微软,软件做这么大,这么难用真的好吗? 于是就尝试了一下使用python完成实验任务,大概过程就是这样子的: 首先,配置运行环境: 下载opencv和python的比较新的版本,推荐opencv2.4.X和python2.7.X. 直接去官网下载就ok了,python安装时一路next就行,下载的opencv.exe

Python+OpenCV人脸检测原理及示例详解

关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

python中使用OpenCV进行人脸检测的例子

OpenCV的人脸检测功能在一般场合还是不错的.而ubuntu正好提供了python-opencv这个包,用它可以方便地实现人脸检测的代码. 写代码之前应该先安装python-opencv: 复制代码 代码如下: $ sudo apt-get install python-opencv 具体原理就不多说了,可以参考一下这篇文章.直接上源码. 复制代码 代码如下: #!/usr/bin/python# -*- coding: UTF-8 -*- # face_detect.py # Face De

Python基于Opencv来快速实现人脸识别过程详解(完整版)

前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

python opencv3实现人脸识别(windows)

本文实例为大家分享了python人脸识别程序,大家可进行测试 #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 视频来源,可以来自一段已存好的视频,也可以直接来自USB摄像头 cap = cv2.VideoCapture(camera_idx) # 告诉OpenCV使用人脸识别分类器

基于python3 OpenCV3实现静态图片人脸识别

本文采用OpenCV3和Python3 来实现静态图片的人脸识别,采用的是Haar文件级联. 首先需要将OpenCV3源代码中找到data文件夹下面的haarcascades文件夹里面包含了所有的OpenCV的人脸检测的XML文件,这些文件可以用于检测静态,视频文件,摄像头视频流中的人脸,找到haarcascades文件夹后,复制里面的XML文件,在你新建的Python脚本文件目录里面建一个名为cascades的文件夹,并把复制的XML文件粘贴到新建的文件夹中一些有人脸的的图片,这个大家可以自行

基于python神经卷积网络的人脸识别

本文实例为大家分享了基于神经卷积网络的人脸识别,供大家参考,具体内容如下 1.人脸识别整体设计方案 客_服交互流程图: 2.服务端代码展示 sk = socket.socket() # s.bind(address) 将套接字绑定到地址.在AF_INET下,以元组(host,port)的形式表示地址. sk.bind(("172.29.25.11",8007)) # 开始监听传入连接. sk.listen(True) while True: for i in range(100): #

Python3一行代码实现图片文字识别的示例

自学Python3第5天,今天突发奇想,想用Python识别图片里的文字.没想到Python实现图片文字识别这么简单,只需要一行代码就能搞定 from PIL import Image import pytesseract #上面都是导包,只需要下面这一行就能实现图片文字识别 text=pytesseract.image_to_string(Image.open('denggao.jpeg'),lang='chi_sim') print(text) 我们以识别诗词为例 下面是我们要识别的图片 先

Python3结合Dlib实现人脸识别和剪切

0.引言 利用python开发,借助Dlib库进行人脸识别,然后将检测到的人脸剪切下来,依次排序显示在新的图像上: 实现的效果如下图所示,将图1原图中的6张人脸检测出来,然后剪切下来,在图像窗口中依次输出显示人脸: 实现比较简单,代码量也比较少,适合入门或者兴趣学习. 图1 原图和处理后得到的图像窗口 1.开发环境 python: 3.6.3 dlib: 19.7 OpenCv, numpy import dlib # 人脸识别的库dlib import numpy as np # 数据处理的库

C#实现基于ffmpeg加虹软的人脸识别的示例

关于人脸识别 目前的人脸识别已经相对成熟,有各种收费免费的商业方案和开源方案,其中OpenCV很早就支持了人脸识别,在我选择人脸识别开发库时,也横向对比了三种库,包括在线识别的百度.开源的OpenCV和商业库虹软(中小型规模免费). 百度的人脸识别,才上线不久,文档不太完善,之前联系百度,官方也给了我基于Android的Example,但是不太符合我的需求,一是照片需要上传至百度服务器(这个是最大的问题),其次,人脸的定位需要自行去实现(捕获到人脸后上传进行识别). OpenCV很早以前就用过,

Python3利用Dlib19.7实现摄像头人脸识别的方法

0.引言 利用python开发,借助Dlib库捕获摄像头中的人脸,提取人脸特征,通过计算欧氏距离来和预存的人脸特征进行对比,达到人脸识别的目的: 可以自动从摄像头中抠取人脸图片存储到本地,然后提取构建预设人脸特征: 根据抠取的 / 已有的同一个人多张人脸图片提取128D特征值,然后计算该人的128D特征均值: 然后和摄像头中实时获取到的人脸提取出的特征值,计算欧氏距离,判定是否为同一张人脸: 人脸识别 / face recognition的说明: wikipedia 关于人脸识别系统 / fac

Python基于Dlib的人脸识别系统的实现

之前已经介绍过人脸识别的基础概念,以及基于opencv的实现方式,今天,我们使用dlib来提取128维的人脸嵌入,并使用k临近值方法来实现人脸识别. 人脸识别系统的实现流程与之前是一样的,只是这里我们借助了dlib和face_recognition这两个库来实现.face_recognition是对dlib库的包装,使对dlib的使用更方便.所以首先要安装这2个库. pip3 install dlib pip3 install face_recognition 然后,还要安装imutils库 p

Python3 利用face_recognition实现人脸识别的方法

前言 之前实践了下face++在线人脸识别版本,这回做一下离线版本.github 上面有关于face_recognition的相关资料,本人只是做个搬运工,对其中的一些内容进行搬运,对其中一些例子进行实现. 官方描述: face_recognition是一个强大.简单.易上手的人脸识别开源项目,并且配备了完整的开发文档和应用案例,特别是兼容树莓派系统.本项目是世界上最简洁的人脸识别库,你可以使用Python和命令行工具提取.识别.操作人脸.本项目的人脸识别是基于业内领先的C++开源库 dlib中

python3+opencv3识别图片中的物体并截取的方法

如下所示: 运行环境:python3.6.4 opencv3.4.0 # -*- coding:utf-8 -*- """ Note: 使用Python和OpenCV检测图像中的物体并将物体裁剪下来 """ import cv2 import numpy as np # step1:加载图片,转成灰度图 image = cv2.imread("353.jpg") gray = cv2.cvtColor(image, cv2.C

python3+dlib实现人脸识别和情绪分析

一.介绍 我想做的是基于人脸识别的表情(情绪)分析.看到网上也是有很多的开源库提供使用,为开发提供了很大的方便.我选择目前用的比较多的dlib库进行人脸识别与特征标定.使用python也缩短了开发周期. 官网对于dlib的介绍是:Dlib包含广泛的机器学习算法.所有的设计都是高度模块化的,快速执行,并且通过一个干净而现代的C ++ API,使用起来非常简单.它用于各种应用,包括机器人技术,嵌入式设备,手机和大型高性能计算环境. 虽然应用都比较高大上,但是自己在PC上做个情绪分析的小软件还是挺有意