使用OpenCV校准鱼眼镜头的方法

01.简介

当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头“经典”方法的效果可能就不是和理想了。即使我们仔细遵循OpenCV文档中的步骤,也可能会得到下面这个奇奇怪怪的照片:

如果小伙伴也遇到了类似情况,那么这篇文章可能会对大家有一定的帮助。

从3.0版开始,OpenCV包含了cv2.fisheye可以很好地处理鱼眼镜头校准的软件包。但是,该模块没有针对读者的相关的教程。

02.相机参数获取

校准镜头其实只需要下面2个步骤。

  • 利用OpenCV计算镜头的2个固有参数。OpenCV称它们为K和D,我们只需要知道它们是numpy数组外即可。
  • 通过K和D对图像进行去畸变矫正。

计算K和D

  • 下载棋盘格图案并将其打印在纸上(字母或A4尺寸)。大家要尽量将这张纸粘在坚硬且平坦的物体表面,例如一块硬纸板上。因为这里的关键是直线必须是直线
  • 将图案放在相机前面拍摄一些图像,图案要取在不同的位置和角度。这里的关键是图案需要以不同的方式出现失真(以便OpenCV尽可能多地了解镜头相关参数)。

我们先将这些图片保存在JPG文件夹中。

现在我们只需要将此Python脚本片段复制到calibrate.py先前保存这些图像的文件夹中的文件中,就可以对其进行命名。

import cv2
assert cv2.__version__[0] == '3', 'The fisheye module requires opencv version >= 3.0.0'
import numpy as np
import os
import glob
CHECKERBOARD = (6,9)
subpix_criteria = (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 0.1)
calibration_flags = cv2.fisheye.CALIB_RECOMPUTE_EXTRINSIC+cv2.fisheye.CALIB_CHECK_COND+cv2.fisheye.CALIB_FIX_SKEW
objp = np.zeros((1, CHECKERBOARD[0]*CHECKERBOARD[1], 3), np.float32)
objp[0,:,:2] = np.mgrid[0:CHECKERBOARD[0], 0:CHECKERBOARD[1]].T.reshape(-1, 2)
_img_shape = None
objpoints = [] # 3d point in real world space
imgpoints = [] # 2d points in image plane.
images = glob.glob('*.jpg')
for fname in images:
  img = cv2.imread(fname)
  if _img_shape == None:
    _img_shape = img.shape[:2]
  else:
    assert _img_shape == img.shape[:2], "All images must share the same size."
  gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
  # Find the chess board corners
  ret, corners = cv2.findChessboardCorners(gray, CHECKERBOARD, cv2.CALIB_CB_ADAPTIVE_THRESH+cv2.CALIB_CB_FAST_CHECK+cv2.CALIB_CB_NORMALIZE_IMAGE)
  # If found, add object points, image points (after refining them)
  if ret == True:
    objpoints.append(objp)
    cv2.cornerSubPix(gray,corners,(3,3),(-1,-1),subpix_criteria)
    imgpoints.append(corners)
N_OK = len(objpoints)
K = np.zeros((3, 3))
D = np.zeros((4, 1))
rvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
tvecs = [np.zeros((1, 1, 3), dtype=np.float64) for i in range(N_OK)]
rms, _, _, _, _ = \
  cv2.fisheye.calibrate(
    objpoints,
    imgpoints,
    gray.shape[::-1],
    K,
    D,
    rvecs,
    tvecs,
    calibration_flags,
    (cv2.TERM_CRITERIA_EPS+cv2.TERM_CRITERIA_MAX_ITER, 30, 1e-6)
  )
print("Found " + str(N_OK) + " valid images for calibration")
print("DIM=" + str(_img_shape[::-1]))
print("K=np.array(" + str(K.tolist()) + ")")
print("D=np.array(" + str(D.tolist()) + ")")

运行python calibrate.py。如果一切顺利,脚本将输出如下内容:

Found 36 images for calibration
DIM=(1600, 1200)
K=np.array([[781.3524863867165, 0.0, 794.7118000552183], [0.0, 779.5071163774452, 561.3314451453386], [0.0, 0.0, 1.0]])
D=np.array([[-0.042595202508066574], [0.031307765215775184], [-0.04104704724832258], [0.015343014605793324]])

03.图像畸变矫正

获得K和D后,我们可以对以下情况获得的图像进行失真矫正:我们需要取消失真的图像与校准期间捕获的图像具有相同的尺寸。也可以将边缘周围的某些区域裁剪掉,来保证使未失真图像的整洁。通过undistort.py使用以下python代码创建文件:

DIM=XXX
K=np.array(YYY)
D=np.array(ZZZ)
def undistort(img_path):
  img = cv2.imread(img_path)
  h,w = img.shape[:2]
  map1, map2 = cv2.fisheye.initUndistortRectifyMap(K, D, np.eye(3), K, DIM, cv2.CV_16SC2)
  undistorted_img = cv2.remap(img, map1, map2, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT)
  cv2.imshow("undistorted", undistorted_img)
  cv2.waitKey(0)
  cv2.destroyAllWindows()
if __name__ == '__main__':
  for p in sys.argv[1:]:
    undistort(p)

现在运行python undistort.py file_to_undistort.jpg。

矫正前

矫正后

如果大家仔细观察,可能会注意到一个问题:原始图像中的大部分会在此过程中被裁剪掉。例如,图像左侧的橙色RC汽车只有一半的车轮保持在未变形的图像中。实际上,原始图像中约有30%的像素丢失了。小伙伴们可以思考思考如果我们想找回丢失的像素该这么办呢?

到此这篇关于使用OpenCV校准鱼眼镜头的方法的文章就介绍到这了,更多相关OpenCV校准鱼眼镜内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • Python基于Opencv来快速实现人脸识别过程详解(完整版)

    前言 随着人工智能的日益火热,计算机视觉领域发展迅速,尤其在人脸识别或物体检测方向更为广泛,今天就为大家带来最基础的人脸识别基础,从一个个函数开始走进这个奥妙的世界. 首先看一下本实验需要的数据集,为了简便我们只进行两个人的识别,选取了beyond乐队的主唱黄家驹和贝斯手黄家强,这哥俩长得有几分神似,这也是对人脸识别的一个考验: 两个文件夹,一个为训练数据集,一个为测试数据集,训练数据集中有两个文件夹0和1,之前看一些资料有说这里要遵循"slabel"命名规则,但后面处理起来比较麻烦,

  • python-opencv在有噪音的情况下提取图像的轮廓实例

    对于一般的图像提取轮廓,介绍了一个很好的方法,但是对于有噪声的图像,并不能很好地捕获到目标物体. 比如对于我的鼠标,提取的轮廓效果并不好,因为噪声很多: 所以本文增加了去掉噪声的部分. 首先加载原始图像,并显示图像 img = cv2.imread("temp.jpg") #载入图像 h, w = img.shape[:2] #获取图像的高和宽 cv2.imshow("Origin", img) 然后进行低通滤波处理,进行降噪 blured = cv2.blur(i

  • python+opencv实现动态物体识别

    注意:这种方法十分受光线变化影响 自己在家拿着手机瞎晃的成果图: 源代码: # -*- coding: utf-8 -*- """ Created on Wed Sep 27 15:47:54 2017 @author: tina """ import cv2 import numpy as np camera = cv2.VideoCapture(0) # 参数0表示第一个摄像头 # 判断视频是否打开 if (camera.isOpened()

  • Python+Opencv识别两张相似图片

    在网上看到python做图像识别的相关文章后,真心感觉python的功能实在太强大,因此将这些文章总结一下,建立一下自己的知识体系. 当然了,图像识别这个话题作为计算机科学的一个分支,不可能就在本文简单几句就说清,所以本文只作基本算法的科普向. 看到一篇博客是介绍这个,但他用的是PIL中的Image实现的,感觉比较麻烦,于是利用Opencv库进行了更简洁化的实现. 相关背景 要识别两张相似图像,我们从感性上来谈是怎么样的一个过程?首先我们会区分这两张相片的类型,例如是风景照,还是人物照.风景照中

  • Python3.7中安装openCV库的方法

    1.首先自己直接在cmd中输入 pip3 install openCV是不可行的,即需要自己下载安装包本地安装 2.openCV库 下载地址http://www.lfd.uci.edu/~gohlke/pythonlibs/#opencv 3.opencv_python‑3.4.2‑cp37‑cp37m‑win_amd64.whl(cp37指的是python的版本,win_amd64是指python是64位的,也有可能有人64位的系统装了32位的python,这时候就需要装win32的版本) 4

  • opencv 做人脸识别 opencv 人脸匹配分析

    机器学习 机器学习的目的是把数据转换成信息. 机器学习通过从数据里提取规则或模式来把数据转成信息. 人脸识别 人脸识别通过级联分类器对特征的分级筛选来确定是否是人脸. 每个节点的正确识别率很高,但正确拒绝率很低. 任一节点判断没有人脸特征则结束运算,宣布不是人脸. 全部节点通过,则宣布是人脸. 工业上,常用人脸识别技术来识别物体. 对图片进行识别 复制代码 代码如下: #include "opencv2/core/core.hpp" #include "opencv2/obj

  • opencv改变imshow窗口大小,窗口位置的方法

    如下所示: cv2.HoughLinesP cv2.namedWindow("enhanced",0); cv2.resizeWindow("enhanced", 640, 480); cv2.imshow("enhanced",lines) cv2.waitKey(0) 创建窗口时候改变下参数就可以鼠标随意拖动窗口改变大小啦 cv::namedWindow("camera", CV_WINDOW_NORMAL);//CV_W

  • 使用OpenCV校准鱼眼镜头的方法

    01.简介 当我们使用的鱼眼镜头视角大于160°时,OpenCV中用于校准镜头"经典"方法的效果可能就不是和理想了.即使我们仔细遵循OpenCV文档中的步骤,也可能会得到下面这个奇奇怪怪的照片: 如果小伙伴也遇到了类似情况,那么这篇文章可能会对大家有一定的帮助. 从3.0版开始,OpenCV包含了cv2.fisheye可以很好地处理鱼眼镜头校准的软件包.但是,该模块没有针对读者的相关的教程. 02.相机参数获取 校准镜头其实只需要下面2个步骤. 利用OpenCV计算镜头的2个固有参数.

  • python opencv 图像尺寸变换方法

    利用Python OpenCV中的 cv.Resize(源,目标,变换方法)就可以实现变换为想要的尺寸了 源文件:就不用说了 目标:你可以对图像进行倍数的放大和缩小 也可以直接的输入尺寸大小 变换的方法: CV_INTER_NN - 最近邻插值, CV_INTER_LINEAR - 双线性插值 (缺省使用) CV_INTER_AREA - 使用象素关系重采样.当图像缩小时候,该方法可以避免波纹出现.当图像放大时,类似于 CV_INTER_NN 方法.. CV_INTER_CUBIC - 立方插值

  • java通过jni调用opencv处理图像的方法

    1. 建立java文件 public class getImageFeature { static{ System.loadLibrary("getImageFeatureDll"); } public native int getImageFeatureByName(String filename); public native int getImageFeatureByMemory(); public static void main(String[] args) { getIma

  • python opencv 图像拼接的实现方法

    初级的图像拼接为将两幅图像简单的粘贴在一起,仅仅是图像几何空间的转移与合成,与图像内容无关.高级图像拼接也叫作基于特征匹配的图像拼接,拼接时消去两幅图像相同的部分,实现拼接合成全景图. 具有相同尺寸的图A和图B含有相同的部分与不同的部分,如图所示:             用基于特征的图像拼接实现后: 设图像高为h,相同部分的宽度为wx 拼接后图像的宽w=wA+wB-wx 因此,可以先构建一个高为h,宽为W*2的空白图像,将左图像向右平移wx,右图像粘贴在右侧.则右图像刚好覆盖左图像中的相同部分

  • python使用opencv驱动摄像头的方法

    如下所示: #coding:utf-8 import cv2 import sys from PIL import Image def CatchUsbVideo(window_name, camera_idx): cv2.namedWindow(window_name) # 捕捉摄像头 cap = cv2.VideoCapture(camera_idx) while cap.isOpened(): ok, frame = cap.read() # 读取一帧数据 if not ok: break

  • vs2019永久配置opencv开发环境的方法步骤

    有很多同学肯定想学习opencv相关的知识,但是有些情况下每建一次项目都要重新引入下各种文件是不是很苦恼,所以我也面临了这个问题,在网上看到很多的同学的方法,有的也都是很一样的,将什么.dll加入环境变量,然后设置项目配置文件什么的,这些东西我也尝试过,但是很容易忘记,我也特意写了一些笔记,但是有时还是会忘记.恰巧我也升级了vs2019,所以也打算更新下方法,做到一劳永逸.下面是教程部分.首先我们要安装好我们的opencv,然后我们安装以后会看到生成的文件夹.如图 这一切就是基础文件,所以这个务

  • python opencv常用图形绘制方法(线段、矩形、圆形、椭圆、文本)

    最近学了下 python opencv,分享下使用 opencv 在图片上绘制常用图形的方法. 案例中实现了在图片中添加线段.圆形.矩形.椭圆形以及添加文字的方法,使用 opencv2 实现的. 实现方法 1)画线段 cv.line 在图片中绘制一段直线 # 绘制线段 # 参数1:图片 # 参数2:起点 # 参数3:终点 # 参数4:BGR颜色 # 参数5:宽度 cv2.line(img, (60, 40), (90, 90), (255, 255, 255), 2); 参数说明 参数 值 说明

  • 详解OpenCV实现特征提取的方法

    目录 前言 1. 颜色 2. 形状 3. 纹理 a. GLCM b.  LBP 结论 前言 如何从图像中提取特征?第一次听说“特征提取”一词是在 YouTube 上的机器学习视频教程中,它清楚地解释了我们如何在大型数据集中提取特征. 很简单,数据集的列就是特征.然而,当我遇到计算机视觉主题时,当听说我们将从图像中提取特征时,吃了一惊.是否开始浏览图像的每一列并取出每个像素? 一段时间后,明白了特征提取在计算机视觉中的含义.特征提取是降维过程的一部分,其中,原始数据的初始集被划分并减少到更易于管理

  • Python+OpenCV读写视频的方法详解

    目录 读视频,提取帧 接口函数:cv2.VideoCapture() 获取视频信息 使用set(cv2.CAP_PROP_POS_FRAMES)读取指定帧 读取函数(重点) 将图像写为视频 示例 fourcc 读视频,提取帧 接口函数:cv2.VideoCapture() 通过video_capture = cv2.VideoCapture(video_path)可以获取读取视频的句柄.而后再通过flag, frame = video_capture.read()可以读取当前帧,flag表示读取

  • OpenCV视频流C++多线程处理方法详细分析

    目录 为什么需要多线程处理视频流 C++的多线程处理方式 函数封装的实现方式 类封装的实现方式 可能遇到的问题 为什么需要多线程处理视频流 在之前有写过一篇文章Python环境下OpenCV视频流的多线程处理方式,上面简单记录了如何使用Python实现对OpenCV视频流的多线程处理.简单来说,在目标检测等任务中,如果视频流的捕获.解码以及检测都在同一个线程中,那么很可能出现目标检测器实时性不高导致的检测时延问题.使用多线程处理,将视频帧的捕获和解码放在一个线程,推理放在一个线程,可以有效缓解时

随机推荐