Python多进程同步Lock、Semaphore、Event实例

同步的方法基本与多线程相同。

1) Lock

当多个进程需要访问共享资源的时候,Lock可以用来避免访问的冲突。

复制代码 代码如下:

import multiprocessing
import sys

def worker_with(lock, f):
    with lock:
        fs = open(f,"a+")
        fs.write('Lock acquired via with\n')
        fs.close()
       
def worker_no_with(lock, f):
    lock.acquire()
    try:
        fs = open(f,"a+")
        fs.write('Lock acquired directly\n')
        fs.close()
    finally:
        lock.release()

if __name__ == "__main__":

f = "file.txt"
 
    lock = multiprocessing.Lock()
    w = multiprocessing.Process(target=worker_with, args=(lock, f))
    nw = multiprocessing.Process(target=worker_no_with, args=(lock, f))

w.start()
    nw.start()

w.join()
    nw.join()

在上面的例子中,如果两个进程没有使用lock来同步,则他们对同一个文件的写操作可能会出现混乱。

2)Semaphore

Semaphore用来控制对共享资源的访问数量,例如池的最大连接数。

复制代码 代码如下:

import multiprocessing
import time

def worker(s,i):
    s.acquire()
    print(multiprocessing.current_process().name + " acquire")
    time.sleep(i)
    print(multiprocessing.current_process().name + " release")
    s.release()

if __name__ == "__main__":
 
    s = multiprocessing.Semaphore(2)
    for i in range(5):
        p = multiprocessing.Process(target=worker, args=(s,i*2))
        p.start()

上面的实例中使用semaphore限制了最多有2个进程同时执行。

3)Event

Event用来实现进程间同步通信。

复制代码 代码如下:

import multiprocessing
import time

def wait_for_event(e):
    """Wait for the event to be set before doing anything"""
    print ('wait_for_event: starting')
    e.wait()
    print ('wait_for_event: e.is_set()->' + str(e.is_set()))

def wait_for_event_timeout(e, t):
    """Wait t seconds and then timeout"""
    print ('wait_for_event_timeout: starting')
    e.wait(t)
    print ('wait_for_event_timeout: e.is_set()->' + str(e.is_set()))

if __name__ == '__main__':
    e = multiprocessing.Event()
    w1 = multiprocessing.Process(name='block',
                                 target=wait_for_event,
                                 args=(e,))
    w1.start()

w2 = multiprocessing.Process(name='non-block',
                                 target=wait_for_event_timeout,
                                 args=(e, 2))
    w2.start()

time.sleep(3)
    e.set()
    print ('main: event is set')
   
#the output is:
#wait_for_event_timeout: starting
#wait_for_event: starting
#wait_for_event_timeout: e.is_set()->False
#main: event is set
#wait_for_event: e.is_set()->True

时间: 2014-11-18

Python多线程、异步+多进程爬虫实现代码

安装Tornado 省事点可以直接用grequests库,下面用的是tornado的异步client. 异步用到了tornado,根据官方文档的例子修改得到一个简单的异步爬虫类.可以参考下最新的文档学习下. pip install tornado 异步爬虫 #!/usr/bin/env python # -*- coding:utf-8 -*- import time from datetime import timedelta from tornado import httpclient, g

Python多进程multiprocessing用法实例分析

本文实例讲述了Python多进程multiprocessing用法.分享给大家供大家参考,具体如下: mutilprocess简介 像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多. 简单的创建进程: import multiprocessing def worker(num): """thread worker function""" print 'Wor

深入浅析python中的多进程、多线程、协程

进程与线程的历史 我们都知道计算机是由硬件和软件组成的.硬件中的CPU是计算机的核心,它承担计算机的所有任务. 操作系统是运行在硬件之上的软件,是计算机的管理者,它负责资源的管理和分配.任务的调度. 程序是运行在系统上的具有某种功能的软件,比如说浏览器,音乐播放器等. 每次执行程序的时候,都会完成一定的功能,比如说浏览器帮我们打开网页,为了保证其独立性,就需要一个专门的管理和控制执行程序的数据结构--进程控制块. 进程就是一个程序在一个数据集上的一次动态执行过程. 进程一般由程序.数据集.进程控

Python控制多进程与多线程并发数总结

一.前言 本来写了脚本用于暴力破解密码,可是1秒钟尝试一个密码2220000个密码我的天,想用多线程可是只会一个for全开,难道开2220000个线程吗?只好学习控制线程数了,官方文档不好看,觉得结构不够清晰,网上找很多文章也都不很清晰,只有for全开线程,没有控制线程数的具体说明,最终终于根据多篇文章和官方文档算是搞明白基础的多线程怎么实现法了,怕长时间不用又忘记,找着麻烦就贴这了,跟我一样新手也可以参照参照. 先说进程和线程的区别: 地址空间:进程内的一个执行单元;进程至少有一个线程;它们共

Python多进程通信Queue、Pipe、Value、Array实例

queue和pipe的区别: pipe用来在两个进程间通信.queue用来在多个进程间实现通信. 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法. 1)Queue & JoinableQueue queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue. multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法. task_done()用来告诉queue一个tas

Python多进程并发(multiprocessing)用法实例详解

本文实例讲述了Python多进程并发(multiprocessing)用法.分享给大家供大家参考.具体分析如下: 由于Python设计的限制(我说的是咱们常用的CPython).最多只能用满1个CPU核心. Python提供了非常好用的多进程包multiprocessing,你只需要定义一个函数,Python会替你完成其他所有事情.借助这个包,可以轻松完成从单进程到并发执行的转换. 1.新建单一进程 如果我们新建少量进程,可以如下: import multiprocessing import t

python多进程操作实例

由于CPython实现中的GIL的限制,python中的多线程其实并不是真正的多线程,如果想要充分地使用多核CPU的资源,在python中大部分情况我们需要使用多进程. 这也许就是python中多进程类库如此简洁好用的原因所在.在python中可以向多线程一样简单地使用多进程. 一.多进程 process的成员变量和方法: >>class multiprocessing.Process([group[, target[, name[, args[, kwargs]]]]]) 来的定义类似于th

python基于multiprocessing的多进程创建方法

本文实例讲述了python基于multiprocessing的多进程创建方法.分享给大家供大家参考.具体如下: import multiprocessing import time def clock(interval): while True: print ("the time is %s"% time.time()) time.sleep(interval) if __name__=="__main__": p = multiprocessing.Process

python 多进程通信模块的简单实现

多进程通信方法好多,不一而数.刚才试python封装好嘅多进程通信模块 multiprocessing.connection. 简单测试咗一下,效率还可以,应该系对socket封装,效率可以达到4krps,可以满足好多方面嘅需求啦. 附代码如下: client 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*-""" download - slave"""__author__ = 'Zagfai

Python标准库之多进程(multiprocessing包)介绍

在初步了解Python多进程之后,我们可以继续探索multiprocessing包中更加高级的工具.这些工具可以让我们更加便利地实现多进程. 进程池 进程池 (Process Pool)可以创建多个进程.这些进程就像是随时待命的士兵,准备执行任务(程序).一个进程池中可以容纳多个待命的士兵. "三个进程的进程池" 比如下面的程序: 复制代码 代码如下: import multiprocessing as mul def f(x):     return x**2 pool = mul.

Python标准库之随机数 (math包、random包)介绍

我们已经在Python运算中看到Python最基本的数学运算功能.此外,math包补充了更多的函数.当然,如果想要更加高级的数学功能,可以考虑选择标准库之外的numpy和scipy项目,它们不但支持数组和矩阵运算,还有丰富的数学和物理方程可供使用. 此外,random包可以用来生成随机数.随机数不仅可以用于数学用途,还经常被嵌入到算法中,用以提高算法效率,并提高程序的安全性. math包 math包主要处理数学相关的运算.math包定义了两个常数: 复制代码 代码如下: math.e   # 自

Python标准库06之子进程 (subprocess包) 详解

这里的内容以Linux进程基础和Linux文本流为基础.subprocess包主要功能是执行外部的命令和程序.比如说,我需要使用wget下载文件.我在Python中调用wget程序.从这个意义上来说,subprocess的功能与shell类似. subprocess以及常用的封装函数 当我们运行python的时候,我们都是在创建并运行一个进程.正如我们在Linux进程基础中介绍的那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python中,我们通过标准库中的subp

Python标准库之循环器(itertools)介绍

在循环对象和函数对象中,我们了解了循环器(iterator)的功能.循环器是对象的容器,包含有多个对象.通过调用循环器的next()方法 (__next__()方法,在Python 3.x中),循环器将依次返回一个对象.直到所有的对象遍历穷尽,循环器将举出StopIteration错误. 在for i in iterator结构中,循环器每次返回的对象将赋予给i,直到循环结束.使用iter()内置函数,我们可以将诸如表.字典等容器变为循环器.比如: 复制代码 代码如下: for i in ite

Python标准库之collections包的使用教程

前言 Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict.所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率. defaultdict defaultd

python标准库os库的函数介绍

OS库提供通用的,基本的操作系统交互功能. -OS库是Python标准库,包含几百个函数 -常用路径操作,进程管理,环境参数等几类 -路径操作: os.path子库,处理文件路径及信息 -进程管理:启动系统中其他程序 -环境参数:获得系统软硬件信息等环境参数 os.path子库以path为入口,用于操作和处理文件路径 import os.path import os.path as op os.path.abspath(path) #返回path在当前系统中的绝对路径 os.path.normp

python标准库OS模块详解

python标准库OS模块简介 os就是"operating system"的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口.通过使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性.如果该模块中相关功能出错,会抛出OSError异常或其子类异常. 注意 如果是读写文件的话,建议使用内置函数open(): 如果是路径相关的操作,建议使用os的子模块os.path: 如果要逐行读取多个文件,建议使用fileinput模

使用Python标准库中的wave模块绘制乐谱的简单教程

在本文中,我们将探讨一种简洁的方式,以此来可视化你的MP3音乐收藏.此方法最终的结果将是一个映射你所有歌曲的正六边形网格地图,其中相似的音轨将处于相邻的位置.不同区域的颜色对应不同的音乐流派(例如:古典.嘻哈.重摇滚).举个例子来说,下面是我所收藏音乐中三张专辑的映射图:Paganini的<Violin Caprices>.Eminem的<The Eminem Show>和Coldplay的<X&Y>. 为了让它更加有趣(在某些情况下更简单),我强加了一些限制.

Python标准库urllib2的一些使用细节总结

Python 标准库中有很多实用的工具类,但是在具体使用时,标准库文档上对使用细节描述的并不清楚,比如 urllib2 这个 HTTP 客户端库.这里总结了一些 urllib2 的使用细节. 1.Proxy 的设置 2.Timeout 设置 3.在 HTTP Request 中加入特定的 Header 4.Redirect 5.Cookie 6.使用 HTTP 的 PUT 和 DELETE 方法 7.得到 HTTP 的返回码 8.Debug Log Proxy 的设置 urllib2 默认会使用

Python标准库defaultdict模块使用示例

Python标准库中collections对集合类型的数据结构进行了很多拓展操作,这些操作在我们使用集合的时候会带来很多的便利,多看看很有好处. defaultdict是其中一个方法,就是给字典value元素添加默认类型,之前看到过但是没注意怎么使用,今天特地瞅了瞅. 首先是各大文章介绍的第一个例子: 复制代码 代码如下: import collections as coll    def default_factory():      return 'default value'    d =