python面积图之曲线图的填充

目录
  • 基础用法
  • 案例
  • 复杂的fille_between(案例来源官网)
  • where和interpolate
    • where
    • interpolate
    • step

用法:

Axes.fill_between(x, y1, y2=0, where=None, interpolate=False, step=None, *, data=None, **kwargs)

参数说明:

基础用法

import matplotlib.pyplot as plt
import numpy as np
x = [1, 2, 3, 4, 5]
y1 = [1, 4, 9, 16, 25]
y2 = [9, 9, 9, 9, 9]
fig, (ax1, ax2) = plt.subplots(1,2)
ax1.fill_between(x, y1, alpha=.5, linewidth=0)
ax1.set_title('填充x,y1之间')
ax2.fill_between(x, y2, alpha=.5, linewidth=1)
ax2.set_title('填充x,y2之间')
plt.show()

当然这样时没有多大意义的,只是想展示出一个比较明确的填充,类似于区域全部填充颜色

案例

import matplotlib.pyplot as plt
import numpy as np

np.random.seed(1)
x = np.linspace(0, 8, 16)
y1 = 3 + 4*x/8 + np.random.uniform(0.0, 0.5, len(x))
y2 = 1 + 2*x/8 + np.random.uniform(0.0, 0.5, len(x))
fig, ax = plt.subplots()
ax.fill_between(x, y1, y2, alpha=.5, linewidth=0)
ax.plot(x, (y1 + y2)/2, linewidth=2)

ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
       ylim=(0, 8), yticks=np.arange(1, 8))
plt.show()

复杂的fille_between(案例来源官网)

import numpy as np
import matplotlib.pyplot as plt

Nsteps, Nwalkers = 100, 250
t = np.arange(Nsteps)
# an (Nsteps x Nwalkers) array of random walk steps
S1 = 0.004 + 0.02*np.random.randn(Nsteps, Nwalkers)
S2 = 0.002 + 0.01*np.random.randn(Nsteps, Nwalkers)
# an (Nsteps x Nwalkers) array of random walker positions
X1 = S1.cumsum(axis=0)
X2 = S2.cumsum(axis=0)
# Nsteps length arrays empirical means and standard deviations of both
# populations over time
mu1 = X1.mean(axis=1)
sigma1 = X1.std(axis=1)
mu2 = X2.mean(axis=1)
sigma2 = X2.std(axis=1)
# plot it!
fig, ax = plt.subplots(1)
ax.plot(t, mu1, lw=2, label='mean population 1')
ax.plot(t, mu2, lw=2, label='mean population 2')
ax.fill_between(t, mu1+sigma1, mu1-sigma1, facecolor='C0', alpha=0.4)
ax.fill_between(t, mu2+sigma2, mu2-sigma2, facecolor='C1', alpha=0.4)
ax.set_title(r'random walkers empirical $\mu$ and $\pm \sigma$ interval')
ax.legend(loc='upper left')
ax.set_xlabel('num steps')
ax.set_ylabel('position')
ax.grid()

where和interpolate

where

定义从何处排除要填充的某些水平区域。填充区域由坐标x[其中]定义。更准确地说,如果其中[i]和其中[i+1],则在x[i]和x[i+1]之间填充。请注意,此定义意味着where中两个假值之间的孤立真值不会导致填充。由于相邻的假值,真实位置的两侧仍保持未填充状态。

import numpy as np
import matplotlib.pyplot as plt

fig, ax = plt.subplots()
x = np.arange(0, 4 * np.pi, 0.01)
y = np.sin(x)
ax.plot(x, y, color='black')
ax.fill_between(x, y, 0, where=(x>4)&(x<5),color='cyan', alpha=0.5)
plt.show()

interpolate

在语义上,where通常用于y1>y2或类似的词。默认情况下,定义填充区域的多边形节点将仅放置在x阵列中的位置。这样的多边形无法描述上述靠近交点的语义。包含交叉点的x截面仅被剪裁。
将“插值”设置为True将计算实际交点,并将填充区域延伸到此点。

import numpy as np
import matplotlib.pyplot as plt

x = np.array([0, 1, 2, 3])
y1 = np.array([0.8, 0.8, 0.2, 0.2])
y2 = np.array([0, 0, 1, 1])

fig, (ax1, ax2) = plt.subplots(2, 1, sharex=True)
ax1.set_title('interpolation=False')
ax1.plot(x, y1, 'o--')
ax1.plot(x, y2, 'o--')
ax1.fill_between(x, y1, y2, where=(y1 > y2), color='C0', alpha=0.3)
ax1.fill_between(x, y1, y2, where=(y1 < y2), color='C1', alpha=0.3)
ax2.set_title('interpolation=True')
ax2.plot(x, y1, 'o--')
ax2.plot(x, y2, 'o--')
ax2.fill_between(x, y1, y2, where=(y1 > y2), color='C0', alpha=0.3,
                 interpolate=True)
ax2.fill_between(x, y1, y2, where=(y1 <= y2), color='C1', alpha=0.3,                interpolate=True)
fig.tight_layout()

step

包含参数为三个{‘pre’,‘post’,‘mid’}
如果填充应为阶跃函数,即x之间的常数,则定义阶跃。该值确定阶跃发生的位置:

  • “pre”:y值从每个x位置持续向左,即间隔(x[i-1],x[i]]的值为y[i]。
  • “post”:y值从每个x位置持续向右,即区间[x[i],x[i+1])的值为y[i]。
  • “mid”:步数出现在x位置的中间。
import numpy as np
import matplotlib.pyplot as plt

a = np.linspace(0,2*3.14,50)
b = np.sin(a)
plt.figsize=((12,6))
plt.subplot(131)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'green', step='pre')
plt.plot(a,b)
plt.title('step=pre')

plt.subplot(132)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'cyan', step='post')
plt.plot(a,b)
plt.title('step=post')

plt.subplot(133)
plt.fill_between(a, b, 0, where = (a > 2) & (a < 5), color = 'red', step='mid')
plt.plot(a,b)
plt.title('step=mid')
plt.show()

偏移会有点不一样,因为函数的缘故,偏移不太明显

到此这篇关于python面积图之曲线图的填充的文章就介绍到这了,更多相关python曲线填充内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

(0)

相关推荐

  • 利用python绘制数据曲线图的实现

    "在举国上下万众一心.众志成城做好新冠肺炎疫情防控工作的特殊时刻,我们不能亲临主战场,但我们能坚持在大战中坚定信心.不负韶华." 1.爬取新闻保存为json文件,并将绘图所需数据保存至数据库 数据库表结构: 代码部分: import pymysql import re import sys,urllib,json from urllib import request from datetime import datetime import pandas as pd Today=date

  • Python绘制3d螺旋曲线图实例代码

    Line plots Axes3D.plot(xs, ys, *args, **kwargs) 绘制2D或3D数据 参数 描述 xs, ys X轴,Y轴坐标定点 zs Z值,每一个点的值都是1 zdir 绘制2D集合时使用z的方向 其他的参数:plot() Python代码: import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as

  • Python matplotlib 绘制双Y轴曲线图的示例代码

    Matplotlib简介 Matplotlib是非常强大的python画图工具 Matplotlib可以画图线图.散点图.等高线图.条形图.柱形图.3D图形.图形动画等. Matplotlib安装 pip3 install matplotlib#python3 双X轴的 可以理解为共享y轴 ax1=ax.twiny() ax1=plt.twiny() 双Y轴的 可以理解为共享x轴 ax1=ax.twinx() ax1=plt.twinx() 自动生成一个例子 x = np.arange(0.,

  • 详解Python+Matplotlib绘制面积图&热力图

    目录 1.绘制面积图 2.绘制热力图 1.绘制面积图 面积图常用于描述某指标随时间的变化程度.其面积也通常可以有一定的含义. 绘制面积图使用的是plt.stackplot()方法. 以小学时期学的 常见的追击相遇问题中的速度时间图像为例,下边绘制出一幅简单的v-t图像. 全局字体设为默认的黑体,时间为从第0秒到第10秒,描述的是甲乙两个物体的速度.显然,面积则表示位移. 标题部分字体使用楷体(将系统中的TTF字体文件"STKAITI.TTF"复制到了当前目录下). import mat

  • python matlibplot绘制多条曲线图

    这里我利用的是matplotlib.pyplot.plot的工具来绘制折线图,这里先给出一个段代码和结果图: # -*- coding: UTF-8 -*- import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt #这里导入你自己的数据 #...... #...... #x_axix,train_pn_dis这些都是长度相同的list() #开始画图 sub_axix = filter(lambda

  • 用python建立两个Y轴的XY曲线图方法

    想把python提取出来的 加载点反力和某个单元的应力画在同一个XY曲线图上,由于两者数量级差太远,故而需要建立有两个Y轴的XY曲线图. 效果为: 代码如下: #创建Quatype,作为标记,用于判断是否需要创建多条Y轴(或X轴) #label 会变成默认的坐标轴名 type 是一个枚举,"type"相同的合并成同一个轴 Quatype1=xyPlot.QuantityType(label='应力' , type=STRESS) Quatype2=xyPlot.QuantityType

  • python画蝴蝶曲线图的实例

    蝴蝶曲线是由Temple H·Fay发现的可用极坐标函数表示的蝴蝶曲线. 由于此曲线优美, 因此就想把它作为博客favicon.ico,这里我使用pytho matplotlib.pyplot包来绘制需要的蝴蝶曲线图. 先看下漂亮的蝴蝶曲线吧. 1.首先我们需要确定蝴蝶曲线的函数表达 2.选择python里面的matplotlib.pyplot作为画图工具 1.首先导入python包 import numpy as np import matplotlib.pyplot as plt 2.设置个

  • python读取excel数据绘制简单曲线图的完整步骤记录

    python读写excel文件有很多种方法: 用xlrd和xlwt进行excel读写 用openpyxl进行excel读写 用pandas进行excel读写 本文使用xlrd读取excel文件(xls,sxls格式),使用xlwt向excel写入数据 一.xlrd和xlwt的安装 安装很简单,windos+r调出运行窗口,输入cmd,进入命令行窗口,输入以下命令. 安装xlrd: pip install xlrd 安装xlwt: pip install xlwt xlrd的API(applica

  • python入门turtle库实现螺旋曲线图的方法示例

    记录turtle库中经常用到的函数. turtle.forward(distance)  画笔向前移动distance距离 turtle.backforward(distance)  画笔向后移动distance距离 turtle.right(degree)  绘制方向向右旋转degree度 turtle.exitonclick()  点击关闭图形窗口 turtle.penup()   抬起画笔,之后移动画笔不绘制形状 turtle.pendown()  落下画笔,之后移动画笔绘制形状 turt

  • 利用Python Matlab绘制曲线图的简单实例

    目录 一.简介 二.绘制图形 1.第一个曲线图 2.第二个图形 3.第三个图形 4.第四个图形 5.画出指定区间的一个多项式函数: 总结 一.简介 我们在这里采用Python中的matplotlib来实现曲线图形的绘制.matplotlib是著名的python绘图库,它提供了一整套绘图API,十分适合交互式绘图. 二.绘制图形 1.第一个曲线图 代码: 具体的绘制的代码如下所示: import matplotlib.pyplot as plt import numpy as np r = np.

随机推荐