在Python中使用AOP实现Redis缓存示例

越来越觉得的缓存是计算机科学里最NB的发明(没有之一),本文就来介绍了一下在Python中使用AOP实现Redis缓存示例,小伙伴们一起来了解一下

import redis
enable=True
#enable=False
def readRedis(key):
  if enable:
    r = redis.Redis(host='10.224.38.31', port=8690,db=0, password='xxxx')
    val = r.get(key)
    if val is None:
      print "can not find data for KEY:%s \n" % (key)
      return None
    else:
      print "====Get VALUE from Redis by KEY:%s \n" % ( key)
      return pickle.loads(val)
  else:
    print "disable cache" 

def writeRedis(key, val):
  r = redis.Redis(host='10.224.38.31', port=8690,db=0, password='xxxx')
  if val is None:
    print "Val is None, don't save it to redis \n"
  else:
    r.set(key, pickle.dumps(val) )
    r.expire(key, 60*60*24*7) #1week
    print "====Write value of KEY:%s to redis \n" % (key) 

import pickle, functools
def cache(f):
 def wrapper(*args, **kwargs):
  key = pickle.dumps((f.__name__, args, kwargs)).replace("\n","")
  val = readRedis(key)
  if val is None:
   val = f(*args, **kwargs) # call the wrapped function, save in cache
   writeRedis(key, val)
  return val # read value from cache
 functools.update_wrapper(wrapper, f) # update wrapper's metadata
 return wrapper  

@cache
def foo(n):
 return n*2 

foo(10) # first call with parameter 10, sleeps
foo(10) # returns immediately
foo(15) # returns immediately
foo(19) # returns immediately 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Python的Flask框架应用调用Redis队列数据的方法

    任务异步化 打开浏览器,输入地址,按下回车,打开了页面.于是一个HTTP请求(request)就由客户端发送到服务器,服务器处理请求,返回响应(response)内容. 我们每天都在浏览网页,发送大大小小的请求给服务器.有时候,服务器接到了请求,会发现他也需要给另外的服务器发送请求,或者服务器也需要做另外一些事情,于是最初们发送的请求就被阻塞了,也就是要等待服务器完成其他的事情. 更多的时候,服务器做的额外事情,并不需要客户端等待,这时候就可以把这些额外的事情异步去做.从事异步任务的工具有很多.

  • python操作redis的方法

    本文实例讲述了python操作redis的方法.分享给大家供大家参考.具体如下: #!/usr/bin/python #coding=utf-8 import redis class CRedis: def __init__(self): self.host = 'localhost' self.port = 6379 self.db = 0 self.r = redis.Redis(host = self.host, port = self.port, db = self.db) #1. st

  • Python使用Redis实现作业调度系统(超简单)

    概述 Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案. Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用于持久性. 相比许多键值数据存储,Redis拥有一套较为丰富的数据类型. Redis可以将数据复制到任意数量的从服务器. Redis 优势 异常快速:Redis的速度非常快,每秒能执行约11万集合,每秒约81000+条记录. 支持丰富的数据类型:Redis支持最大多数开发人员已经知道像列表,集

  • Windows下安装Redis及使用Python操作Redis的方法

    首先说一下在Windows下安装Redis,安装包可以在https://github.com/MSOpenTech/redis/releases中找到,可以下载msi安装文件,也可以下载zip的压缩文件. 下载zip文件之后解压,解压后是这些文件: 里面这个Windows Service Documentation.docx是一个文档,里面有安装指导和使用方法. 也可以直接下载msi安装文件,直接安装,安装之后的安装目录中也是这些文件,可以对redis进行相关的配置. 安装完成之后可以对redi

  • python中redis的安装和使用

    python下redis安装 用python操作redis数据库,先下载redis-py模块下载地址https://github.com/andymccurdy/redis-py shell# wget https://github.com/andymccurdy/redis-py 然后解压 在解压目录运行 python setup.py install安装模块即可 安装完成 使用: import redis r = redis.Redis(host=’localhost’, port=6379

  • python笔记:mysql、redis操作方法

    模块安装: 数据操作用到的模块pymysql,需要通过pip install pymysql进行安装. redis操作用的模块是redis,需要通过pip install redis进行安装. 检验是否安装成功:进入到Python命令行模式,输入import pymysql. import redis ,无报错代表成功: mysql操作方法如下: 查询数据:fetchone.fetchmany(n).fetchall() import pymysql #建立mysql连接,ip.端口.用户名.密

  • Python的Flask框架使用Redis做数据缓存的配置方法

    Redis是一款依据BSD开源协议发行的高性能Key-Value存储系统.会把数据读入内存中提高存取效率.Redis性能极高能支持超过100K+每秒的读写频率,还支持通知key过期等等特性,所以及其适合做缓存. 下载安装 根据redis中文网使用wget下载压缩包 $ wget http://download.redis.io/releases/redis-3.0.5.tar.gz $ tar xzf redis-3.0.5.tar.gz $ cd redis-3.0.5 $ make 二进制文

  • python连接MySQL、MongoDB、Redis、memcache等数据库的方法

    用Python写脚本也有一段时间了,经常操作数据库(MySQL),现在就整理下对各类数据库的操作,如后面有新的参数会补进来,慢慢完善. 一,python 操作 MySQL:详情见:[apt-get install python-mysqldb] 复制代码 代码如下: #!/bin/env python# -*- encoding: utf-8 -*-#-------------------------------------------------------------------------

  • python安装与使用redis的方法

    本文实例讲述了python安装与使用redis的方法.分享给大家供大家参考,具体如下: 1.安装 好吧,我承认我只会最简单的安装: sudo apt-get install redis-server python 支持包: (其实就一个文件,搞过来就能用) sudo apt-get install python-redis 2.配置 配置一下吧,默认配置文件在: "/etc/redis/redis.conf" 绑定ip: "bind 127.0.0.1″ -> &quo

  • Python使用redis pool的一种单例实现方式

    本文实例讲述了Python使用redis pool的一种单例实现方式.分享给大家供大家参考,具体如下: 为适应多个redis实例共享同一个连接池的场景,可以类似于以下单例方式实现: import redis class RedisDBConfig: HOST = '127.0.0.1' PORT = 6379 DBID = 0 def operator_status(func): '''''get operatoration status ''' def gen_status(*args, **

随机推荐