Python实现爬取亚马逊数据并打印出Excel文件操作示例

本文实例讲述了Python实现爬取亚马逊数据并打印出Excel文件操作。分享给大家供大家参考,具体如下:

python大神们别喷,代码写的很粗糙,主要是完成功能,能够借鉴就看下吧,我是学java的,毕竟不是学python的,自己自学看了一点点python,望谅解。

#!/usr/bin/env python3
# encoding=UTF-8
import sys
import re
import urllib.request
import json
import time
import zlib
from html import unescape
import threading
import os
import xlwt
import math
import requests
#例如这里设置递归为一百万
sys.setrecursionlimit(1000000000)
##获取所有列别
def getProUrl():
  urlList = []
  headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"}
  session = requests.Session()
  furl="https://www.amazon.cn/?tag=baidu250-23&hvadid={creative}&ref=pz_ic_22fvxh4dwf_e&page="
  for i in range(0,1):
    html=""
    html = session.post(furl+str(i),headers = headers)
    html.encoding = 'utf-8'
    s=html.text.encode('gb2312','ignore').decode('gb2312')
    url=r'</li><li id=".*?" data-asin="(.+?)" class="s-result-item celwidget">'
    reg=re.compile(url,re.M)
    name='"category" : "' + '(.*?)' + '"'
    reg1=re.compile(name,re.S)
    urlList = reg1.findall(html.text)
    return urlList
##根据类别获取数据链接
def getUrlData(ci):
   url="https://www.amazon.cn/s/ref=nb_sb_noss_2?__mk_zh_CN=%E4%BA%9A%E9%A9%AC%E9%80%8A%E7%BD%91%E7%AB%99&url=search-alias%3Daps&field-keywords="+ci+"&page=1&sort=review-rank"
   return url
##定时任务,等待1秒在进行
def fun_timer():
  time.sleep(3)
##根据链接进行查询每个类别的网页内容
def getProData(allUrlList):
  webContentHtmlList = []
  headers = {"User-Agent": "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/50.0.2661.102 Safari/537.36"}
  for ci in allUrlList:
    session = requests.Session()
    fun_timer()
    html = session.get(getUrlData(ci),headers = headers)
    # 设置编码
    html.encoding = 'utf-8'
    html.text.encode('gb2312', 'ignore').decode('gb2312')
    gxg = r'</li><li id=".*?" data-asin="(.+?)" class="s-result-item celwidget">'
    reg = re.compile(gxg, re.M)
    items = reg.findall(html.text)
    print(html.text)
    webContentHtmlList.append(html.text)
  return webContentHtmlList
##根据网页内容过滤需要的属性和值
def getProValue():
  list1 = [] * 5
  list2 = [] * 5
  list3 = [] * 5
  list4 = [] * 5
  list5 = [] * 5
  list6 = [] * 5
  list7 = [] * 5
  list8 = [] * 5
  urlList = getProUrl();
  urlList.remove('全部分类')
  urlList.remove('Prime会员优先购')
  index = 0
  for head in urlList:
    if index >= 0 and index < 5:
      list1.append(head)
      index = index + 1
    if index >= 5 and index < 10:
      list2.append(head)
      index = index + 1
    if index >= 10 and index < 15:
      list3.append(head)
      index = index + 1
    if index >= 15 and index < 20:
      list4.append(head)
      index = index + 1
    if index >= 20 and index < 25:
      list5.append(head)
      index = index + 1
    if index >= 25 and index < 30:
      list6.append(head)
      index = index + 1
    if index >= 30 and index < 35:
      list7.append(head)
      index = index + 1
    if index >= 35 and index < 40:
      list8.append(head)
      index = index + 1
  webContentHtmlList1 = []
  webContentHtmlList1 = getProData(list1)
  webContentHtmlList2 = []
  webContentHtmlList2 = getProData(list2)
  webContentHtmlList3 = []
  webContentHtmlList3 = getProData(list3)
  webContentHtmlList4 = []
  webContentHtmlList4 = getProData(list4)
  webContentHtmlList5 = []
  webContentHtmlList5 = getProData(list5)
  webContentHtmlList6 = []
  webContentHtmlList6 = getProData(list6)
  webContentHtmlList7 = []
  webContentHtmlList7 = getProData(list7)
  webContentHtmlList8 = []
  webContentHtmlList8 = getProData(list8)
  ##存储所有数据的集合
  dataTwoAllList1 = []
  print("开始检索数据,检索数据中..........")
  ##网页内容1
  for html in webContentHtmlList1:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容2
  for html in webContentHtmlList2:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容3
  for html in webContentHtmlList3:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容4
  for html in webContentHtmlList4:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容5
  for html in webContentHtmlList5:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容6
  for html in webContentHtmlList6:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容7
  for html in webContentHtmlList7:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  ##网页内容8
  for html in webContentHtmlList8:
    for i in range(15):
      dataList = []
      dataList.append(unescape(getProCategory(html,i)))
      dataList.append(unescape(getProTitle(html,i)))
      dataList.append(getProPrice(html,i))
      dataList.append(getSellerCount(html,i))
      dataList.append(getProStar(html,i))
      dataList.append(getProCommentCount(html,i))
      print(dataList)
      dataTwoAllList1.append(dataList)
  print("检索数据完成!!!!")
  print("开始保存并打印Excel文档数据!!!!")
  ##保存文档
  createTable(time.strftime("%Y%m%d") + '亚马逊销量数据统计.xls', dataTwoAllList1)
##抽取类别
def getProCategory(html,i):
    i = 0;
    name = '<span class="a-color-state a-text-bold">' + '(.*?)' + '</span>'
    reg=re.compile(name,re.S)
    items = reg.findall(html)
    if len(items)==0:
      return ""
    else:
      if i<len(items):
        return items[i]
      else:
        return ""
##抽取标题
def getProTitle(html,i):
  html = getHtmlById(html,i)
  name = '<a class="a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal" target="_blank" title="' + '(.*?)' + '"'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return ""
  else:
    return items[0]
##抽取价格<a class="a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal" target="_blank" title="
def getProPrice(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-size-base a-color-price s-price a-text-bold">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "¥0"
  else:
    return items[0]
##抽取卖家统计
def getSellerCount(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-color-secondary">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "(0 卖家)"
  else:
    return checkSellerCount(items,0)
##检查卖家统计
def checkSellerCount(items,i):
  result = items[i].find('卖家') >= 0
  if result:
    if len(items[i])<=9:
      return items[i]
    else:
      return '(0 卖家)'
  else:
    if i + 1 < len(items):
      i = i + 1
      result = items[i].find('卖家') >= 0
      if result:
        if len(items[i]) <= 9:
          return items[i]
        else:
          return '(0 卖家)'
        if i + 1 < len(items[i]):
          i = i + 1
          result = items[i].find('卖家') >= 0
          if result:
            if len(items[i]) <= 9:
              return items[i]
            else:
              return '(0 卖家)'
          else:
            return '(0 卖家)'
        else:
          return '(0 卖家)'
      else:
        return '(0 卖家)'
    else:
      return '(0 卖家)'
    return '(0 卖家)'
##抽取星级 <span class="a-icon-alt">
def getProStar(html,i):
  html = getHtmlById(html,i)
  name = '<span class="a-icon-alt">' + '(.*?)' + '</span>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "平均 0 星"
  else:
    return checkProStar(items,0)
##检查星级
def checkProStar(items,i):
  result = items[i].find('星') >= 0
  if result:
      return items[i]
  else:
    if i + 1 < len(items):
      i = i + 1
      result = items[i].find('星') >= 0
      if result:
        return items[i]
      else:
        return '平均 0 星'
    else:
      return '平均 0 星'
    return '平均 0 星'
##抽取商品评论数量 销量
##<a class="a-size-small a-link-normal a-text-normal" target="_blank" href="https://www.amazon.cn/dp/B073LBRNV2/ref=sr_1_1?ie=UTF8&qid=1521782688&sr=8-1&keywords=%E5%9B%BE%E4%B9%A6#customerReviews" rel="external nofollow" >56</a>
def getProCommentCount(html,i):
  name = '<a class="a-size-small a-link-normal a-text-normal" target="_blank" href=".*?#customerReviews" rel="external nofollow" ' + '(.*?)' + '</a>'
  reg=re.compile(name,re.S)
  items = reg.findall(html)
  if len(items)==0:
    return "0"
  else:
    if i<len(items):
      return items[i].strip(">")
    else:
      return "0"
##根据id取出html里面的内容
def get_id_tag(content, id_name):
 id_name = id_name.strip()
 patt_id_tag = """<[^>]*id=['"]?""" + id_name + """['" ][^>]*>"""
 id_tag = re.findall(patt_id_tag, content, re.DOTALL|re.IGNORECASE)
 if id_tag:
   id_tag = id_tag[0]
 else:
   id_tag=""
 return id_tag
##缩小范围 定位值
def getHtmlById(html,i):
    start = get_id_tag(html,"result_"+str(i))
    i=i+1
    end = get_id_tag(html, "result_" + str(i))
    name = start + '.*?'+end
    reg = re.compile(name, re.S)
    html = html.strip()
    items = reg.findall(html)
    if len(items) == 0:
      return ""
    else:
      return items[0]
##生成word文档
def createTable(tableName,dataTwoAllList):
  flag = 1
  results = []
  results.append("类别,标题,价格,卖家统计,星级,评论数")
  columnName = results[0].split(',')
  # 创建一个excel工作簿,编码utf-8,表格中支持中文
  wb = xlwt.Workbook(encoding='utf-8')
  # 创建一个sheet
  sheet = wb.add_sheet('sheet 1')
  # 获取行数
  rows = math.ceil(len(dataTwoAllList))
  # 获取列数
  columns = len(columnName)
  # 创建格式style
  style = xlwt.XFStyle()
  # 创建font,设置字体
  font = xlwt.Font()
  # 字体格式
  font.name = 'Times New Roman'
  # 将字体font,应用到格式style
  style.font = font
  # 创建alignment,居中
  alignment = xlwt.Alignment()
  # 居中
  alignment.horz = xlwt.Alignment.HORZ_CENTER
  # 应用到格式style
  style.alignment = alignment
  style1 = xlwt.XFStyle()
  font1 = xlwt.Font()
  font1.name = 'Times New Roman'
  # 字体颜色(绿色)
  # font1.colour_index = 3
  # 字体加粗
  font1.bold = True
  style1.font = font1
  style1.alignment = alignment
  for i in range(columns):
    # 设置列的宽度
    sheet.col(i).width = 5000
  # 插入列名
  for i in range(columns):
    sheet.write(0, i, columnName[i], style1)
  for i in range(1,rows):
    for j in range(0,columns):
      sheet.write(i, j, dataTwoAllList[i-1][j], style)
    wb.save(tableName)
##入口开始
input("按回车键开始导出..........")
fun_timer()
print("三秒后开始抓取数据.......,请等待!")
getProValue();
print("数据导出成功!请注意查看!")
print("数据文档《亚马逊销量数据统计.xls》已经存于C盘下面的C:\Windows\SysWOW64的该路径下面!!!!")
input()

结果数据:

打包成exe文件,直接可以点击运行:打包过程我就不一一说了,都是一些命令操作:

要安装pyinstaller,打成exe的操作命令:--inco是图标,路径和项目当前路径一样

途中遇到很多问题,都一一解决了,乱码,ip限制,打包后引入模块找不到,递归最大次数,过滤的一些问题

pyinstaller -F -c --icon=my.ico crawling.py    这是打包命令

效果图:

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

时间: 2019-05-13

Python爬取网易云音乐热门评论

最近在研究文本挖掘相关的内容,所谓巧妇难为无米之炊,要想进行文本分析,首先得到有文本吧.获取文本的方式有很多,比如从网上下载现成的文本文档,或者通过第三方提供的API进行获取数据.但是有的时候我们想要的数据并不能直接获取,因为并不提供直接的下载渠道或者API供我们获取数据.那么这个时候该怎么办呢?有一种比较好的办法是通过网络爬虫,即编写计算机程序伪装成用户去获得想要的数据.利用计算机的高效,我们可以轻松快速地获取数据. 那么该如何写一个爬虫呢?有很多种语言都可以写爬虫,比如Java,php,py

python爬虫实战之爬取京东商城实例教程

前言 本文主要介绍的是利用python爬取京东商城的方法,文中介绍的非常详细,下面话不多说了,来看看详细的介绍吧. 主要工具 scrapy BeautifulSoup requests 分析步骤 1.打开京东首页,输入裤子将会看到页面跳转到了这里,这就是我们要分析的起点 2.我们可以看到这个页面并不是完全的,当我们往下拉的时候将会看到图片在不停的加载,这就是ajax,但是当我们下拉到底的时候就会看到整个页面加载了60条裤子的信息,我们打开chrome的调试工具,查找页面元素时可以看到每条裤子的信

Python爬取网页中的图片(搜狗图片)详解

前言 最近几天,研究了一下一直很好奇的爬虫算法.这里写一下最近几天的点点心得.下面进入正文: 你可能需要的工作环境: Python 3.6官网下载 本地下载 我们这里以sogou作为爬取的对象. 首先我们进入搜狗图片http://pic.sogou.com/,进入壁纸分类(当然只是个例子Q_Q),因为如果需要爬取某网站资料,那么就要初步的了解它- 进去后就是这个啦,然后F12进入开发人员选项,笔者用的是Chrome. 右键图片>>检查 发现我们需要的图片src是在img标签下的,于是先试着用

python爬取亚马逊书籍信息代码分享

我有个需求就是抓取一些简单的书籍信息存储到mysql数据库,例如,封面图片,书名,类型,作者,简历,出版社,语种. 我比较之后,决定在亚马逊来实现我的需求. 我分析网站后发现,亚马逊有个高级搜索的功能,我就通过该搜索结果来获取书籍的详情URL. 由于亚马逊的高级搜索是用get方法的,所以通过分析,搜索结果的URL,可得到node参数是代表书籍类型的.field-binding_browse-bin是代表书籍装饰. 所以我固定了书籍装饰为平装,而书籍的类型,只能每次运行的时候,爬取一种类型的书籍难

python制作爬虫爬取京东商品评论教程

本篇文章是python爬虫系列的第三篇,介绍如何抓取京东商城商品评论信息,并对这些评论信息进行分析和可视化.下面是要抓取的商品信息,一款女士文胸.这个商品共有红色,黑色和肤色三种颜色, 70B到90D共18个尺寸,以及超过700条的购买评论. 京东商品评论信息是由JS动态加载的,所以直接抓取商品详情页的URL并不能获得商品评论的信息.因此我们需要先找到存放商品评论信息的文件.这里我们使用Chrome浏览器里的开发者工具进行查找. 具体方法是在商品详情页点击鼠标右键,选择检查,在弹出的开发者工具界

Python爬虫:通过关键字爬取百度图片

使用工具:Python2.7 点我下载 scrapy框架 sublime text3 一.搭建python(Windows版本)  1.安装python2.7 ---然后在cmd当中输入python,界面如下则安装成功  2.集成Scrapy框架----输入命令行:pip install Scrapy 安装成功界面如下: 失败的情况很多,举例一种: 解决方案: 其余错误可百度搜索. 二.开始编程. 1.爬取无反爬虫措施的静态网站.例如百度贴吧,豆瓣读书. 例如-<桌面吧>的一个帖子https:

python爬虫_微信公众号推送信息爬取的实例

问题描述 利用搜狗的微信搜索抓取指定公众号的最新一条推送,并保存相应的网页至本地. 注意点 搜狗微信获取的地址为临时链接,具有时效性. 公众号为动态网页(JavaScript渲染),使用requests.get()获取的内容是不含推送消息的,这里使用selenium+PhantomJS处理 代码 #! /usr/bin/env python3 from selenium import webdriver from datetime import datetime import bs4, requ

Python爬取当当、京东、亚马逊图书信息代码实例

注:1.本程序采用MSSQLserver数据库存储,请运行程序前手动修改程序开头处的数据库链接信息 2.需要bs4.requests.pymssql库支持 3.支持多线程 from bs4 import BeautifulSoup import re,requests,pymysql,threading,os,traceback try: conn = pymysql.connect(host='127.0.0.1', port=3306, user='root', passwd='root',

Python实现爬取知乎神回复简单爬虫代码分享

看知乎的时候发现了一个 "如何正确地吐槽" 收藏夹,里面的一些神回复实在很搞笑,但是一页一页地看又有点麻烦,而且每次都要打开网页,于是想如果全部爬下来到一个文件里面,是不是看起来很爽,并且随时可以看到全部的,于是就开始动手了. 工具 1.Python 2.7 2.BeautifulSoup 分析网页 我们先来看看知乎上该网页的情况 网址:,容易看到,网址是有规律的,page慢慢递增,这样就能够实现全部爬取了. 再来看一下我们要爬取的内容: 我们要爬取两个内容:问题和回答,回答仅限于显示

python实现爬取千万淘宝商品的方法

本文实例讲述了python实现爬取千万淘宝商品的方法.分享给大家供大家参考.具体实现方法如下: import time import leveldb from urllib.parse import quote_plus import re import json import itertools import sys import requests from queue import Queue from threading import Thread URL_BASE = 'http://s

python使用sessions模拟登录淘宝的方式

之前想爬取一些淘宝的数据,后来发现需要登录,找了很多的资料,有个使用request的sessions加上cookie来登录的,cookie的获取在登录后使用开发者工具可以找到.不过这个登录后获得的网页的代码是静态的,获取动态网页还得另寻他法,一般需要的数据可以在网页的源码中得到,但是你知道的,有些动态加载的就不是那么简单了,而且我发现这样获得的源码中,有些想要获取的数据的格式是经过改动的,比如我要某个商品的具体链接,发现并不能直接使用. 总体而言,这是一次失败的尝试,不过倒是了解到使用sessi

python爬虫爬取淘宝商品信息

本文实例为大家分享了python爬取淘宝商品的具体代码,供大家参考,具体内容如下 import requests as req import re def getHTMLText(url): try: r = req.get(url, timeout=30) r.raise_for_status() r.encoding = r.apparent_encoding return r.text except: return "" def parasePage(ilt, html): tr

python爬虫爬取淘宝商品信息(selenum+phontomjs)

本文实例为大家分享了python爬虫爬取淘宝商品的具体代码,供大家参考,具体内容如下 1.需求目标 : 进去淘宝页面,搜索耐克关键词,抓取 商品的标题,链接,价格,城市,旺旺号,付款人数,进去第二层,抓取商品的销售量,款号等. 2.结果展示 3.源代码 # encoding: utf-8 import sys reload(sys) sys.setdefaultencoding('utf-8') import time import pandas as pd time1=time.time()

Python进阶之使用selenium爬取淘宝商品信息功能示例

本文实例讲述了Python进阶之使用selenium爬取淘宝商品信息功能.分享给大家供大家参考,具体如下: # encoding=utf-8 __author__ = 'Jonny' __location__ = '西安' __date__ = '2018-05-14' ''' 需要的基本开发库文件: requests,pymongo,pyquery,selenium 开发流程: 搜索关键字:利用selenium驱动浏览器搜索关键字,得到查询后的商品列表 分析页码并翻页:得到商品页码数,模拟翻页

python爬取淘宝商品详情页数据

在讲爬取淘宝详情页数据之前,先来介绍一款 Chrome 插件:Toggle JavaScript (它可以选择让网页是否显示 js 动态加载的内容),如下图所示: 当这个插件处于关闭状态时,待爬取的页面显示的数据如下: 当这个插件处于打开状态时,待爬取的页面显示的数据如下:   可以看到,页面上很多数据都不显示了,比如商品价格变成了划线价格,而且累计评论也变成了0,说明这些数据都是动态加载的,以下演示真实价格的找法(评论内容找法类似),首先检查页面元素,然后点击Network选项卡,刷新页面,可

python爬取淘宝商品销量信息

python爬取淘宝商品销量的程序,运行程序,输入想要爬取的商品关键词,在代码中的'###'可以进一步约束商品的属性,比如某某作者的书籍,可以在###处输入作者名字,以及时期等等.最后可以得到所要商品的总销量 import requests import bs4 import re import json def open(keywords, page): headers={"User-Agent":"Mozilla/5.0 (Windows NT 10.0; WOW64)

Python通过正则库爬取淘宝商品信息代码实例

使用正则库爬取淘宝商品的商品信息,首先我们需要确定想要爬取的对象 我们在淘宝里搜索"python",出来的结果 从url连接中可以得到搜索商品的关键字是"q=",所以我们要用的起始url为:https://s.taobao.com/search?q=python 然后翻页,经过对比发现,翻页后,变化的关键字是s,每次翻页,s便以44的倍数增长(可以数一下每页显示的商品数量,刚好是44) 所以可以根据关键字"s=",来设置爬取的深度(爬取多少页)

python按综合、销量排序抓取100页的淘宝商品列表信息

进入淘宝网,分别按综合.销量排序抓取100页的所有商品的列表信息. 1.按综合 import re from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.common.by import By from selenium.webdriver.support.ui import WebDriverWait from selenium

python定向爬取淘宝商品价格

python爬虫学习之定向爬取淘宝商品价格,供大家参考,具体内容如下 import requests import re def getHTMLText(url): try: r = requests.get(url, timeout=30) r.raise_for_status() #如果发送了一个失败请求(非200响应),#我们可以通过 Response.raise_for_status() 来抛出异常: r.encoding= r.apparent_encoding return r.te