python 协程中的迭代器,生成器原理及应用实例详解

本文实例讲述了python 协程中的迭代器,生成器原理及应用。分享给大家供大家参考,具体如下:

1.迭代器理解

迭代器:

  • 迭代器是访问可迭代对象的工具
  • 迭代器是指用iter(obj)函数返回的对象(实例)
  • 迭代器是指用next(it)函数获取可迭代对象的数据

迭代器函数(iter和next)

  • iter(iterable)从可迭代对象中返回一个迭代器,iterable必须是能提供一个迭代器的对象
  • next(iterator) 从迭代器iterator中获取下一了记录,如果无法获取下一条记录,则触发stoptrerator异常

说明:
1.迭代器只能往前取值,不会后退
2.用iter函数可以返回一个可迭代对象的迭代器

2.迭代器的应用

class Fabonacci(object):
  def __init__(self,all_num):
    self.all_num = all_num
    self.current_num = 0
    self.a = 0
    self.b = 1

  def __iter__(self):
    return self

  def __next__(self):
    if self.current_num < self.all_num:
      ret = self.a

      self.a, self.b = self.b, self.a + self.b
      self.current_num += 1

      return ret
    else:
      raise StopIteration

fibo = Fabonacci(10)
for num in fibo:
  print(num)

3.生成器的理解

生成器(generator)

  • 是构造新的可迭代对象的一种简单方式。一般的函数return只会返回单个值,而生成器并不是直接将可迭代值直接放入内存中,而是以延迟的方式返回一个值序列,即每返回一个值之后暂停,直到下一个值被请求时再继续,可有效节省内存占用。
  • 要构建一个生成器,则需要用到关键字yield,yield的作用与函数的返回值return有些类似,通过在函数中将return替换成yield就是把函数变成生成器,带有
    yield 的函数不再是普通函数,python
    解释器会将函数对象视为生成器对象,并且该生成器返回的是yield表达式生成的可迭代值序列,可通过for循环等方法依次读取生成器返回的可迭代值序列
  • 生成器生成的可迭代值只可以被读取一次,每一次迭代都是按生成器代码流程遇见yield表达式就返回值并记录位置后中止留待下一次迭代,下一次迭代时执行代码的起始位置是从上一次记录位置开始,直至整个生成器代码运行结束。

4.生成器的应用

1)

def create_num(all_num):
  a, b = 0, 1
  current_num = 0
  while current_num < all_num:
    # print(a)
    yield a
    a, b = b, a+b
    current_num += 1

obj = create_num(10)
while True:
  try:
    ret = next(obj)
    print(ret)
  except Exception as ret:
    break


2)通过send启动生成器
send一般不会放到第一次启动生成器,如果非要这么做,那么传递None
错误示范:

def create_num(all_num):
  a, b = 0, 1
  current_num = 0
  while current_num < all_num:
    ret = yield a
    print(">>>ret>>>", ret)
    a, b = b, a+b
    current_num += 1

obj = create_num(10)

ret = obj.send("hello") #第一个就调用send方法
print(ret)

ret = next(obj)
print(ret)

正确示范:

def create_num(all_num):
  a, b = 0, 1
  current_num = 0
  while current_num < all_num:
    ret = yield a
    print(">>>ret>>>", ret)
    a, b = b, a+b
    current_num += 1

obj = create_num(10)

ret = next(obj)
print(ret)

ret = obj.send("hello")
print(ret)

def create_num(all_num):
  a, b = 0, 1
  current_num = 0
  while current_num < all_num:
    ret = yield a
    print(">>>ret>>>", ret)
    a, b = b, a+b
    current_num += 1

obj = create_num(10)

ret = obj.send(None)
print(ret)

ret = next(obj)
print(ret)


3).使用生成器完成多任务(并发)

import time

def task_1():
  while True:
    print("----1----")
    time.sleep(0.1)
    yield

def task_2():
  while True:
    print("----2----")
    time.sleep(1)
    yield

def main():
  t1 = task_1()
  t2 = task_2()
  while True:
    next(t1)
    next(t2)

if __name__ == '__main__':
  main()

4).gevent使用生成器

导入genvent库

import gevent
import time

def f1(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    gevent.sleep(0.5)

def f2(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    gevent.sleep(0.5)

def f3(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    gevent.sleep(0.5)

print("----1----")
g1 = gevent.spawn(f1,5)
print("----2----")
g2 = gevent.spawn(f2,5)
print("----3----")
g3 = gevent.spawn(f3,5)
g1.join()
g2.join()
g3.join()


修改time.sleep()成gevent.sleep()的简单方法:(打补丁)
只需要导入monkey,写一句代码monkey.patch_all()
,运行时就会自动替换

import gevent
import time
from gevent import monkey

monkey.patch_all()

def f1(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

def f2(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

def f3(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

print("----1----")
g1 = gevent.spawn(f1,5)
print("----2----")
g2 = gevent.spawn(f2,5)
print("----3----")
g3 = gevent.spawn(f3,5)
g1.join()
g2.join()
g3.join()


创建多个gevent时不需一个一个添加join

import gevent
import time
from gevent import monkey

monkey.patch_all()

def f1(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

def f2(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

def f3(n):
  for i in range(n):
    print(gevent.getcurrent(),i)
    time.sleep(0.5)

gevent.joinall([
  gevent.spawn(f1,5),
  gevent.spawn(f2,5),
  gevent.spawn(f3,5)])

更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程》

希望本文所述对大家Python程序设计有所帮助。

(0)

相关推荐

  • python生成器,可迭代对象,迭代器区别和联系

    生成器,可迭代对象,迭代器之间究竟是什么关系? 用一幅图来概括: 1.生成器 定义生成器 方式一: //区别于列表生成式 gen = [x*x for x in range(5)] gen = (x*x for x in range(5)) print(gen) //Out:<generator object <genexpr> at 0x00000258DC5CD8E0> 方式二: def fib(): prev, curr = 0, 1 while True: yield cu

  • Python3中的列表生成式、生成器与迭代器实例详解

    本文实例讲述了Python3中的列表生成式.生成器与迭代器.分享给大家供大家参考,具体如下: 列表生成式 Python内置的一种极其强大的生成列表 list 的表达式.返回结果必须是列表. 基本语法: [ 变量表达式 for 变量 in 表达式 ] 示例 a = [x ** 2 for x in range(1, 10)] b = [x * x for x in range(1, 11) if x % 2 == 0] c = [m + n for m in 'ABC' for n in '123

  • 解析Python中的生成器及其与迭代器的差异

    生成器 生成器是一种迭代器,是一种特殊的函数,使用yield操作将函数构造成迭代器.普通的函数有一个入口,有一个返回值:当函数被调用时,从入口开始执行,结束时返回相应的返回值.生成器定义的函数,有多个入口和多个返回值:对生成器执行next()操作,进行生成器的入口开始执行代码,yield操作向调用者返回一个值,并将函数挂起:挂起时,函数执行的环境和参数被保存下来:对生成器执行另一个next()操作时,参数从挂起状态被重新调用,进入上次挂起的执行环境继续下面的操作,到下一个yield操作时重复上面

  • Python中生成器和迭代器的区别详解

    Python中生成器和迭代器的区别(代码在Python3.5下测试): Num01–>迭代器 定义: 对于list.string.tuple.dict等这些容器对象,使用for循环遍历是很方便的.在后台for语句对容器对象调用iter()函数.iter()是python内置函数. iter()函数会返回一个定义了next()方法的迭代器对象,它在容器中逐个访问容器内的元素.next()也是python内置函数.在没有后续元素时,next()会抛出一个StopIteration异常,通知for语句

  • Python中的迭代器与生成器高级用法解析

    迭代器 迭代器是依附于迭代协议的对象--基本意味它有一个next方法(method),当调用时,返回序列中的下一个项目.当无项目可返回时,引发(raise)StopIteration异常. 迭代对象允许一次循环.它保留单次迭代的状态(位置),或从另一个角度讲,每次循环序列都需要一个迭代对象.这意味我们可以同时迭代同一个序列不只一次.将迭代逻辑和序列分离使我们有更多的迭代方式. 调用一个容器(container)的__iter__方法创建迭代对象是掌握迭代器最直接的方式.iter函数为我们节约一些

  • python生成器/yield协程/gevent写简单的图片下载器功能示例

    本文实例讲述了python生成器/yield协程/gevent写简单的图片下载器功能.分享给大家供大家参考,具体如下: 1.生成器: '''第二种生成器''' # 函数只有有yield存在就是生成器 def test(i): while True: i += 1 res = yield i print(res) i += 1 return res def main(): t = test(1) # 创建生成器对象 print(next(t)) # next第一次执行从上到下,yield是终点 p

  • Python 中迭代器与生成器实例详解

    Python 中迭代器与生成器实例详解 本文通过针对不同应用场景及其解决方案的方式,总结了Python中迭代器与生成器的一些相关知识,具体如下: 1.手动遍历迭代器 应用场景:想遍历一个可迭代对象中的所有元素,但是不想用for循环 解决方案:使用next()函数,并捕获StopIteration异常 def manual_iter(): with open('/etc/passwd') as f: try: while True: line=next(f) if line is None: br

  • 老生常谈Python之装饰器、迭代器和生成器

    在学习python的时候,三大"名器"对没有其他语言编程经验的人来说,应该算是一个小难点,本次博客就博主自己对装饰器.迭代器和生成器理解进行解释. 为什么要使用装饰器 什么是装饰器?"装饰"从字面意思来谁就是对特定的建筑物内按照一定的思路和风格进行美化的一种行为,所谓"器"就是工具,对于python来说装饰器就是能够在不修改原始的代码情况下给其添加新的功能,比如一款软件上线之后,我们需要在不修改源代码和不修改被调用的方式的情况下还能为期添加新的功

  • 举例讲解Python中的迭代器、生成器与列表解析用法

    迭代器:初探 上一章曾经提到过,其实for循环是可用于任何可迭代的对象上的.实际上,对Python中所有会从左至右扫描对象的迭代工具而言都是如此,这些迭代工具包括了for循环.列表解析.in成员关系测试以及map内置函数等. "可迭代对象"的概念在Python中是相当新颖的,基本这就是序列观念的通用化:如果对象时实际保存的序列,或者可以再迭代工具环境中一次产生一个结果的对象,那就看做是可迭代的. >>文件迭代器 作为内置数据类型的文件也是可迭代的,它有一个名为__next_

  • python的迭代器与生成器实例详解

    本文以实例详解了python的迭代器与生成器,具体如下所示: 1. 迭代器概述:   迭代器是访问集合元素的一种方式.迭代器对象从集合的第一个元素开始访问,直到所有的元素被访问完结束.迭代器只能往前不会后退,不过这也没什么,因为人们很少在迭代途中往后退.   1.1 使用迭代器的优点   对于原生支持随机访问的数据结构(如tuple.list),迭代器和经典for循环的索引访问相比并无优势,反而丢失了索引值(可以使用内建函数enumerate()找回这个索引值).但对于无法随机访问的数据结构(比

  • 深入讲解Python中的迭代器和生成器

    在Python中,很多对象都是可以通过for语句来直接遍历的,例如list.string.dict等等,这些对象都可以被称为可迭代对象.至于说哪些对象是可以被迭代访问的,就要了解一下迭代器相关的知识了. 迭代器 迭代器对象要求支持迭代器协议的对象,在Python中,支持迭代器协议就是实现对象的__iter__()和next()方法.其中__iter__()方法返回迭代器对象本身:next()方法返回容器的下一个元素,在结尾时引发StopIteration异常. __iter__()和next()

  • 浅谈Python中的可迭代对象、迭代器、For循环工作机制、生成器

    1.iterable iterator区别 要了解两者区别,先要了解一下迭代器协议: 迭代器协议是指:对象需要提供__next__()方法,它返回迭代中的元素,在没有更多元素后,抛出StopIteration异常,终止迭代. 可迭代对象就是:实现了迭代器协议的对象. 协议是一种约定,可迭代对象实现迭代器协议,Python的内置工具(如for循环,sum,min,max函数等)通过迭代器协议访问对象,因此,for循环并不需要知道对象具体是什么,只需要知道对象能够实现迭代器协议即可. 迭代器(ite

随机推荐

其他