Python使用random模块生成随机数操作实例详解

本文实例讲述了Python使用random模块生成随机数操作。分享给大家供大家参考,具体如下:

今天在用Python编写一个小程序时,要用到随机数,于是就在网上查了一下关于Python生成各种随机数的方法,现将其总结如下:

此处,利用Python中的random模块生成随机数。因此首先必须导入该模块:import random

一. 随机产生一个元素

import random
#生成一个0到1的随机浮点数: 0 <= n < 1.0
print(random.random())
>>> 0.8296185863491462

#生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限。
#如果a > b,则生成的随机数n: a <= n <= b。如果 a <b, 则 b <= n <= a。
#函数原型为:random.uniform(a, b)
print(random.uniform(1, 10))
>>> 8.257312492950838

#生成一个指定范围内的整数。其中参数a是下限,参数b是上限,
#生成的随机数n: a <= n <= b,函数原型为:random.randint(a, b)
#注意:此处要求 a<=b
print(random.randint(1, 10))
>>> 3

#从指定范围内,按指定基数递增的集合中获取一个随机数
#函数原型为:random.randrange(start, stop, step)
#如产生一个0-10的随机数,其步长为2,即[0,2,4,6,8],然后在随机取出一个随机数
print(random.randrange(0, 10, 2))
>>> 2

#从序列中获取一个随机元素。 函数原型为:random.choice(sequence)
#注意:sequence在python不是一种特定的类型,而是泛指一系列的类型;
#注意:list, tuple, 字符串都属于sequence。
print(random.choice( ['apple', 'pear', 'peach', 'orange', 'lemon'] ))
print(random.choice( ('1', '2', '3', '4', '5') ))
print(random.choice( [1, 2, 3, 4, 5] ))
>>> orange
>>> 2
>>> 2

#用于将一个列表中的元素打乱。 函数原型为:random.shuffle(x[, random])
p = ["Python", "is", "powerful", "simple", "and so on..."]
random.shuffle(p)
print(p)
>>> ['Python', 'is', 'simple', 'powerful', 'and so on...']

#从指定序列中随机获取指定长度的片断。sample函数不会修改原有序列。
#如果k大于sequence元素个数的话会报错。 函数原型为:random.sample(sequence, k)
list = [1,2,3,4,5,6,7,8,9]
print(random.sample(list, 2))
print(random.sample(list, 5))
>>> [5, 3]
>>> [9, 5, 4, 7, 3]

二.产生一个随机数组

import numpy as np
#例如产生一个随机数组array
#方法一:
a = np.array([2,1,4,5,3,9,6,7,8,0])
print(a)
>>> array([2,1,4,5,3,9,6,7,8,0])

#产生一个(0,1)之间的10维的随机数组
#方法二;
b = np.random.rand(10)
print(b)
>>> array([ 0.43634533, 0.00256198, 0.9252553 , 0.46312913, 0.18253324,
      0.70458872, 0.79719794, 0.18972441, 0.5304701 , 0.11495708])

#产生一个(0,1)之间的10维的随机数组
#方法三;
c = np.random.random(10)
print(c)
>>> array([ 0.62725822, 0.69752737, 0.67910128, 0.32876791, 0.05591991,
      0.71435415, 0.62612756, 0.10492805, 0.45868039, 0.66527572])

#产生一个(0,1)之间的 3*4 的数组矩阵
#方法三;
d = np.random.random(size = (3,4))
print(d)
>>> array([[ 0.81287511, 0.07447028, 0.83052561, 0.69899251],
      [ 0.30087294, 0.24102044, 0.2261788 , 0.7931203 ],
      [ 0.10688122, 0.93165383, 0.02486699, 0.66883373]])

三.随机产生一个list或tuple

import random
#例如随机产生一个指定范围的整数list或tuple
#方法一:
a = [random.randint(0,5) for i in range(20)]
print(a)

#方法二;
for _ in range(10):
  b = random.randint(0,5)
  print(b)

结果为:

[5, 2, 0, 1, 3, 2, 4, 1, 2, 3, 5, 1, 1, 3, 1, 3, 1, 1, 3, 0]
4
2
1
1
3
0
5
4
4
5

PS:这里再提供几款相关工具供大家参考使用:

在线随机数生成工具:
http://tools.jb51.net/aideddesign/rnd_num

在线随机生成个人信息数据工具:
http://tools.jb51.net/aideddesign/rnd_userinfo

在线随机字符/随机密码生成工具:
http://tools.jb51.net/aideddesign/rnd_password

在线随机数字/字符串生成工具:
http://tools.jb51.net/aideddesign/suijishu

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python字符串操作技巧汇总》、《Python编码操作技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

时间: 2019-09-16

Python中random模块生成随机数详解

Python中的random模块用于生成随机数.下面介绍一下random模块中最常用的几个函数. random.random random.random()用于生成一个0到1的随机符点数: 0 <= n < 1.0 random.uniform random.uniform的函数原型为:random.uniform(a, b),用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成的随机数n: a <= n <= b.如果 a <

Python实现生成随机数据插入mysql数据库的方法

本文实例讲述了Python实现生成随机数据插入mysql数据库的方法.分享给大家供大家参考,具体如下: 运行结果: 实现代码: import random as r import pymysql first=('张','王','李','赵','金','艾','单','龚','钱','周','吴','郑','孔','曺','严','华','吕','徐','何') middle=('芳','军','建','明','辉','芬','红','丽','功') last=('明','芳','','民','敏

win7安装python生成随机数代码分享

复制代码 代码如下: import random def genrand(small, big) :    return small + (big-small) * random.random() def display(small, big) :    return r'请输入上下限(默认%.2f~%.2f):' % (small, big) big = 100small = 0 while True :    try :        s = input(display(small, big

基于python实现在excel中读取与生成随机数写入excel中

具体要求是:在一份已知的excel表格中读取学生的学号与姓名,再将这些数据放到新的excel表中的第一列与第二列,最后再生成随机数作为学生的考试成绩. 首先要用到的数据库有:xlwt,xlrd,random这三个数据库. 命令如下: import xlwt import xlrd import random 现有一份表格内容如下图: 现在我们需要提取这其中的B1-C14. (提示:在对这份电子表格进行操作的时候,要使用到这个电子表格的地址,即表格的储存位置.) excel=xlrd.open_w

python3生成随机数实例

本文实例讲述了python3生成随机数的方法.分享给大家供大家参考.具体实现方法如下: 该实例是根据一本书上看到过一个随机数的小程序,经过自己改动,变为了一个猜数字的小游戏,现在在python3下重写了一遍. 这是一个控制台下的猜数程序,winxp+python3.2+eric5和IDLE测试通过,但直接用winxp的命令行运行有问题,原因还未知,慢慢找.ubuntu+python3.1测试通过. 具体实现代码如下: 复制代码 代码如下: # -*- coding: utf-8 -*- impo

Python生成随机数组的方法小结

本文实例讲述了Python生成随机数组的方法.分享给大家供大家参考,具体如下: 研究排序问题的时候常常需要生成随机数组来验证自己排序算法的正确性和性能,今天把Python生成随机数组的方法稍作总结,以备以后查看使用. 一.使用random模块生成随机数组 python的random模块中有一些生成随机数字的方法,例如random.randint, random.random, random.uniform, random.randrange,这些函数大同小异,均是在返回指定范围内的一个整数或浮点

详解用python生成随机数的几种方法

今天学习了用python生成仿真数据的一些基本方法和技巧,写成博客和大家分享一下. 本篇博客主要讲解如何从给定参数的的正态分布/均匀分布中生成随机数以及如何以给定概率从数字列表抽取某数字或从区间列表的某一区间内生成随机数,按照内容将博客分为3部分,并附上代码. 1 从给定参数的正态分布中生成随机数 当考虑从正态分布中生成随机数时,应当首先知道正态分布的均值和方差(标准差),有了这些,就可以调用python中现有的模块和函数来生成随机数了.这里调用了Numpy模块中的random.normal函数

Python生成随机数的方法

如果你对在Python生成随机数与random模块中最常用的几个函数的关系与不懂之处,下面的文章就是对Python生成随机数与random模块中最常用的几个函数的关系,希望你会有所收获,以下就是这篇文章的介绍. random.random()用于生成 用于生成一个指定范围内的随机符点数,两个参数其中一个是上限,一个是下限.如果a > b,则生成随机数 n: a <= n <= b.如果 a <b, 则 b <= n <= a. print random.uniform(

Python简单生成随机数的方法示例

本文实例讲述了Python简单生成随机数的方法.分享给大家供大家参考,具体如下: 主要知识点: 随机整数: random.randint(a,b):返回随机整数x,a<=x<=b 包含范围的随机整数 random.randrange(start,stop,[,step]):返回一个范围在(start,stop,step)之间的随机整数,不包括结束值. 0-1之间的随机浮点数 随机实数:random.random():返回0到1之间的浮点数 指定范围的随机浮点数 random.uniform(a

Python内置random模块生成随机数的方法

本文我们详细地介绍下两个模块关于生成随机序列的其他使用方法. 随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random()随机生成 0 到 1 之间的浮点数[0.0, 1.0).注意的是返回的随机数可能会是 0 但

Python3内置模块random随机方法小结

前言 random是Python中与随机数相关的模块,其本质就是一个伪随机数生成器,我们可以利用random模块基础生成各种不同的随机数,以及一些基于随机数的操作. 生成随机数相关 生成0~1之间的浮点数 import random r = random.random() print(r) r = random.random() print(r) 示例结果: 0.9928249533693085 0.474901555446297 生成指定范围内的浮点数 import random r = ra

Python随机函数random()使用方法小结

1. random.random() random.random()方法返回一个随机数,其在0至1的范围之内,以下是其具体用法: import random print ("随机数: ", random.random()) 输出结果:0.22867521257116 2. random.uniform() random.uniform()是在指定范围内生成随机数,其有两个参数,一个是范围上限,一个是范围下线,具体用法如下: import random print (random.uni

python3常用的数据清洗方法(小结)

首先载入各种包: import pandas as pd import numpy as np from collections import Counter from sklearn import preprocessing from matplotlib import pyplot as plt %matplotlib inline import seaborn as sns plt.rcParams['font.sans-serif'] = ['SimHei'] # 中文字体设置-黑体 p

Python3内置模块之json编解码方法小结

Python3内置模块之json编解码方法小结 Python3中我们利用内置模块 json 解码和编码 JSON对象 ,JSON(JavaScript Object Notation)是指定 RFC 7159(废弃了RFC 4627)和 ECMA-404是一种轻量级数据交换格式,受 JavaScript对象文字语法的启发 (虽然它不是JavaScript 1的严格子集).下面为Python对象-->JSON对象的对照关系表. dumps编码 我们利用 dumps 将Python对象编码为 JSO

Python3列表内置方法大全及示例代码小结

Python中的列表是简直可说是有容乃大,虽然看似类似C中的数组,但是Python列表可以接受任意的对象元素,比如,字符串,数字,布尔值,甚至列表,字典等等,自由度提升到一个新的高度,而Python也提供了大量列表相关的内置方法来有效操作列表: 方法 描述 append 将单个对象添加至列表末尾 clear 删除列表中所有项目 copy 列表的浅拷贝,参见上篇文章<Python列表赋值,复制,深拷贝以及5种浅拷贝详解> count 统计指定对象在列表中出现的次数 extend 通过附加iter

python3 selenium 切换窗口的几种方法小结

第一种方法: 使用场景: 打开多个窗口,需要定位到新打开的窗口 使用方法: # 获取打开的多个窗口句柄 windows = driver.window_handles # 切换到当前最新打开的窗口 driver.switch_to.window(windows[-1]) 举例说明: # _._ coding:utf-8 _._ """ :author: 花花测试 :time: 2017.05.03 :content: 使用第一种方法切换浏览器 ""&quo

python随机模块random使用方法详解

random随机模块包括返回随机数的函数,可以用于模拟或者任何产生随机输出的程序. 一.random模块常用函数介绍 random.random() - 生成一个从0.0(包含)到 1.0(不包含)之间的随机浮点数: random.uniform(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数类型是浮点数: random.randint(a, b) - 生成一个范围为 a≤N≤b 的随机数,随机数的类型是整形,注意与random.uniform(a, b)区别: random.ra

python3.5绘制随机漫步图

本文实例为大家分享了python3.5绘制随机漫步图的具体代码,供大家参考,具体内容如下 代码中我们定义两个模型,一个是RandomWalk.py模型,用于随机的选择前进方向.此模型中的RandomWalk类包含两个方法,一个是__init__(),一个是fill_walk(),后者是计算随机漫步的所有点.另外一个是rw_visual.py模型,用于绘制随机漫步图. 代码如下: RandomWalk.py from random import choice class RandomWalk():

python中csv文件的若干读写方法小结

如下所示: //用普通文本文件方式打开和操作 with open("'file.csv'") as cf: lines=cf.readlines() ...... //用普通文本方式打开,用csv模块操作 import csv with open("file.csv") as cf: lines=csv.reader(cf) for line in lines: print(line) ...... import csv headers=['id','usernam

python训练数据时打乱训练数据与标签的两种方法小结

如下所示: <code class="language-python">import numpy as np data = np.array([[1,1],[2,2],[3,3],[4,4],[5,5]]) y = np.array([1,2,3,4,5]) print '-------第1种方法:通过打乱索引从而打乱数据,好处是1:数据量很大时能够节约内存,2每次都不一样----------' data = np.array([[1,1],[2,2],[3,3],[4,4