python快速排序代码实例

一、 算法描述:

1.先从数列中取出一个数作为基准数。
2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边。
3.再对左右区间重复第二步,直到各区间只有一个数。

 二、python快速排序代码

代码如下:

#!/usr/bin/python
# -*- coding: utf-8 -*-

def sub_sort(array,low,high):
    key = array[low]
    while low < high:
        while low < high and array[high] >= key:
            high -= 1
        while low < high and array[high] < key:
            array[low] = array[high]
            low += 1
            array[high] = array[low]
    array[low] = key
    return low

def quick_sort(array,low,high):
     if low < high:
        key_index = sub_sort(array,low,high)
        quick_sort(array,low,key_index)
        quick_sort(array,key_index+1,high)

if __name__ == '__main__':
    array = [8,10,9,6,4,16,5,13,26,18,2,45,34,23,1,7,3]
    print array
    quick_sort(array,0,len(array)-1)
    print array

结果:
[8, 10, 9, 6, 4, 16, 5, 13, 26, 18, 2, 45, 34, 23, 1, 7, 3]
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 16, 18, 23, 26, 34, 45]

时间: 2013-11-19

python冒泡排序算法的实现代码

1.算法描述:(1)共循环 n-1 次(2)每次循环中,如果 前面的数大于后面的数,就交换(3)设置一个标签,如果上次没有交换,就说明这个是已经好了的. 2.python冒泡排序代码 复制代码 代码如下: #!/usr/bin/python# -*- coding: utf-8 -*- def bubble(l):    flag = True    for i in range(len(l)-1, 0, -1):        if flag:             flag = False

Python实现快速排序算法及去重的快速排序的简单示例

快速排序由于排序效率在同为O(N*logN)的几种排序方法中效率较高,因此经常被采用. 该方法的基本思想是: 1.先从数列中取出一个数作为基准数. 2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. 3.再对左右区间重复第二步,直到各区间只有一个数. 现在通过一个实例来说明快排. 比如有一个数组: 6 2 4 5 3 第一步:选取一个基准数,不要被这个名词吓到了,你可以把它看作是一个比较大小的数,因为排序就是比较大小, 比如我选取最后一个数3为基准数,依次把数组的数和

python 快速排序代码

复制代码 代码如下: def quick_sort(ls): return [] if ls == [] else quick_sort([y for y in ls[1:] if y < ls[0]]) + [ls[0]] + quick_sort([y for y in ls[1:] if y >= ls[0]]) if __name__ == '__main__': l1 = [3,56,8,1,34,56,89,234,56,231,45,90,33,66,88,11,22] l2 =

python 实现归并排序算法

理论不多说: 复制代码 代码如下: #!/usr/bin/python import sys def merge(array, q, p, r): left_array = array[q:p+1] right_array = array[p+1:r+1] left_array_num = len(left_array) right_array_num = len(right_array) i, j , k= [0, 0, q] while i < left_array_num and j <

python 算法 排序实现快速排序

QUICKSORT(A, p, r)是快速排序的子程序,调用划分程序对数组进行划分,然后递归地调用QUICKSORT(A, p, r),以完成快速排序的过程.快速排序的最差时间复杂度为O(n2),平时时间复杂度为O(nlgn).最差时间复杂度的情况为数组基本有序的时候,平均时间复杂度为数组的数值分布较为平均的时候.在平时情况下快速排序跟堆排序的时间复杂度都为O(nlgn),但是快速排序的常数项较小,所以要优于堆排序. PARTITION(A, p, r) 复制代码 代码如下: x ← A[r]

Python实现快速排序和插入排序算法及自定义排序的示例

一.快速排序 快速排序(Quicksort)是对冒泡排序的一种改进.由C. A. R. Hoare在1962年提出.它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 快速排序,递归实现 def quick_sort(num_list): """ 快速排序 """ if num_li

Python实现的数据结构与算法之快速排序详解

本文实例讲述了Python实现的数据结构与算法之快速排序.分享给大家供大家参考.具体分析如下: 一.概述 快速排序(quick sort)是一种分治排序算法.该算法首先 选取 一个划分元素(partition element,有时又称为pivot):接着重排列表将其 划分 为三个部分:left(小于划分元素pivot的部分).划分元素pivot.right(大于划分元素pivot的部分),此时,划分元素pivot已经在列表的最终位置上:然后分别对left和right两个部分进行 递归排序. 其中

javascript与Python快速排序实例对比

本文实例对比了javascript与Python快速排序实现方法.分享给大家供大家参考.具体如下: js实现方法: function quicksort(arr) { if (arr.length <= 1) return arr return quicksort(arr.filter(function (lt, i) {return i > 0 && lt < arr[0]})) .concat([arr[0]]) .concat(quicksort(arr.filte

Python实现的快速排序算法详解

本文实例讲述了Python实现的快速排序算法.分享给大家供大家参考,具体如下: 快速排序基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列. 如序列[6,8,1,4,3,9],选择6作为基准数.从右向左扫描,寻找比基准数小的数字为3,交换6和3的位置,[3,8,1,4,6,9],接着从左向右扫描,寻找比基准数大的数字为8,交换6和8的位置

快速排序的算法思想及Python版快速排序的实现示例

快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序.它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod). 1.分治法的基本思想 分治法的基本思想是:将原问题分解为若干个规模更小但结构与原问题相似的子问题.递归地解这些子问题,然后将这些子问题的解组合为原问题的解. 2.快速排序的基本思想 设当前待排序的无序区为R[low..high],利用分治法可将快速排序的基本思想描述为: (1)分解: 在R[low..high]中任选一个记录作为基准(

python 实现插入排序算法

复制代码 代码如下: #!/usr/bin/python def insert_sort(array): for i in range(1, len(array)): key = array[i] j = i - 1 while j >= 0 and key < array[j]: array[j + 1] = array[j] j-=1 array[j + 1] = key if __name__ == "__main__": array = [2, 4, 32, 64,

python实现的各种排序算法代码

复制代码 代码如下: # -*- coding: utf-8 -*-# 测试各种排序算法# link:www.jb51.net# date:2013/2/2 #选择排序def select_sort(sort_array):    for i, elem in enumerate(sort_array):        for j, elem in enumerate(sort_array[i:]):            if sort_array[i] > sort_array[j + i]

Python实现的选择排序算法原理与用法实例分析

本文实例讲述了Python实现的选择排序算法.分享给大家供大家参考,具体如下: 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 比如在一个长度为N的无序数组中,在第一趟遍历N个数据,找出其中最小的数值与第一个元素交换,第二趟遍历剩下的N-1个数据,找出其中最小的数值与第二个元素交换......第N-1趟遍历剩下的2个数据,找出其中最小的数值与第N-1个元素

Python实现的计数排序算法示例

本文实例讲述了Python实现的计数排序算法.分享给大家供大家参考,具体如下: 计数排序是一种非常快捷的稳定性强的排序方法,时间复杂度O(n+k),其中n为要排序的数的个数,k为要排序的数的组大值.计数排序对一定量的整数排序时候的速度非常快,一般快于其他排序算法.但计数排序局限性比较大,只限于对整数进行排序.计数排序是消耗空间发杂度来获取快捷的排序方法,其空间发展度为O(K)同理K为要排序的最大值. 计数排序的基本思想为一组数在排序之前先统计这组数中其他数小于这个数的个数,则可以确定这个数的位置

Python实现的选择排序算法示例

本文实例讲述了Python实现的选择排序算法.分享给大家供大家参考,具体如下: 选择排序(Selection sort)是一种简单直观的排序算法.它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完. 选择排序每次只记录最大数的索引值. 类似于冒泡排序, 也是要比较n-1次, 区别是冒泡排序每次都交换, 选择排序只在最后比较完后才进行交换 示例代码: #!/usr/bin/env python # coding:utf-8 de

Python实现的桶排序算法示例

本文实例讲述了Python实现的桶排序算法.分享给大家供大家参考,具体如下: 桶排序也叫计数排序,简单来说,就是将数据集里面所有元素按顺序列举出来,然后统计元素出现的次数.最后按顺序输出数据集里面的元素. 但是桶排序非常浪费空间, 比如需要排序的范围在0~2000之间, 需要排序的数是[3,9,4,2000], 同样需要2001个空间 注意: 桶排序不能排序小数 以下为从小到大代码实现 #!/usr/bin/env python # coding:utf-8 def bucketSort(num

java实现的各种排序算法代码示例

折半插入排序 折半插入排序是对直接插入排序的简单改进.此处介绍的折半插入,其实就是通过不断地折半来快速确定第i个元素的 插入位置,这实际上是一种查找算法:折半查找.Java的Arrays类里的binarySearch()方法,就是折半查找的实现,用 于从指定数组中查找指定元素,前提是该数组已经处于有序状态.与直接插入排序的效果相同,只是更快了一些,因 为折半插入排序可以更快地确定第i个元素的插入位置 代码: package interview; /** * @author Administrat

Java实现几种常见排序算法代码

稳定度(稳定性)一个排序算法是稳定的,就是当有两个相等记录的关键字R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前. 排序算法分类 常见的有插入(插入排序/希尔排序).交换(冒泡排序/快速排序).选择(选择排序).合并(归并排序)等. 一.插入排序 插入排序(Insertion Sort),它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入.插入排序在实现上,通常采用in-place排序(即只需用到O(1)的额外空间的排序),

python实现的希尔排序算法实例

本文实例讲述了python实现希尔排序算法的方法.分享给大家供大家参考.具体如下: def shellSort(items): inc = len(items) / 2 while inc: for i in xrange(len(items)): j = i temp = items[i] while j >= inc and items[j-inc] > temp: items[j] = items[j - inc] j -= inc items[j] = temp inc = inc/2

JavaScript中的排序算法代码

作为排序依据的数据项称为"排序码",也即数据元素的关键码.为了便于查找,通常希望计算机中的数据表是按关键码有序的.如有序表的折半查找,查找效率较高.还有,二叉排序树.B-树和B+树的构造过程就是一个排序过程.若关键码是主关键码,则对于任意待排序序列,经排序后得到的结果是唯一的:若关键码是次关键码,排序结果可能不唯一,这是因为具有相同关键码的数据元素,这些元素在排序结果中,它们之间的的位置关系与排序前不能保持. 若对任意的数据元素序列,使用某个排序方法,对它按关键码进行排序:若相同关键码

Python实现各种排序算法的代码示例总结

在Python实践中,我们往往遇到排序问题,比如在对搜索结果打分的排序(没有排序就没有Google等搜索引擎的存在),当然,这样的例子数不胜数.<数据结构>也会花大量篇幅讲解排序.之前一段时间,由于需要,我复习了一下排序算法,并用Python实现了各种排序算法,放在这里作为参考. 最简单的排序有三种:插入排序,选择排序和冒泡排序.这三种排序比较简单,它们的平均时间复杂度均为O(n^2),在这里对原理就不加赘述了.贴出来源代码. 插入排序: def insertion_sort(sort_lis