Java concurrency之共享锁和ReentrantReadWriteLock_动力节点Java学院整理

ReadWriteLock 和 ReentrantReadWriteLock介绍

ReadWriteLock,顾名思义,是读写锁。它维护了一对相关的锁 — — “读取锁”和“写入锁”,一个用于读取操作,另一个用于写入操作。

“读取锁”用于只读操作,它是“共享锁”,能同时被多个线程获取。

“写入锁”用于写入操作,它是“独占锁”,写入锁只能被一个线程锁获取。

注意:不能同时存在读取锁和写入锁!

ReadWriteLock是一个接口。ReentrantReadWriteLock是它的实现类,ReentrantReadWriteLock包括子类ReadLock和WriteLock。

ReadWriteLock 和 ReentrantReadWriteLock函数列表

ReadWriteLock函数列表

// 返回用于读取操作的锁。
Lock readLock()
// 返回用于写入操作的锁。
Lock writeLock()

ReentrantReadWriteLock函数列表

// 创建一个新的 ReentrantReadWriteLock,默认是采用“非公平策略”。
ReentrantReadWriteLock()
// 创建一个新的 ReentrantReadWriteLock,fair是“公平策略”。fair为true,意味着公平策略;否则,意味着非公平策略。
ReentrantReadWriteLock(boolean fair)

// 返回当前拥有写入锁的线程,如果没有这样的线程,则返回 null。
protected Thread getOwner()
// 返回一个 collection,它包含可能正在等待获取读取锁的线程。
protected Collection<Thread> getQueuedReaderThreads()
// 返回一个 collection,它包含可能正在等待获取读取或写入锁的线程。
protected Collection<Thread> getQueuedThreads()
// 返回一个 collection,它包含可能正在等待获取写入锁的线程。
protected Collection<Thread> getQueuedWriterThreads()
// 返回等待获取读取或写入锁的线程估计数目。
int getQueueLength()
// 查询当前线程在此锁上保持的重入读取锁数量。
int getReadHoldCount()
// 查询为此锁保持的读取锁数量。
int getReadLockCount()
// 返回一个 collection,它包含可能正在等待与写入锁相关的给定条件的那些线程。
protected Collection<Thread> getWaitingThreads(Condition condition)
// 返回正等待与写入锁相关的给定条件的线程估计数目。
int getWaitQueueLength(Condition condition)
// 查询当前线程在此锁上保持的重入写入锁数量。
int getWriteHoldCount()
// 查询是否给定线程正在等待获取读取或写入锁。
boolean hasQueuedThread(Thread thread)
// 查询是否所有的线程正在等待获取读取或写入锁。
boolean hasQueuedThreads()
// 查询是否有些线程正在等待与写入锁有关的给定条件。
boolean hasWaiters(Condition condition)
// 如果此锁将公平性设置为 ture,则返回 true。
boolean isFair()
// 查询是否某个线程保持了写入锁。
boolean isWriteLocked()
// 查询当前线程是否保持了写入锁。
boolean isWriteLockedByCurrentThread()
// 返回用于读取操作的锁。
ReentrantReadWriteLock.ReadLock readLock()
// 返回用于写入操作的锁。
ReentrantReadWriteLock.WriteLock writeLock()

ReentrantReadWriteLock数据结构

ReentrantReadWriteLock的UML类图如下:

从中可以看出:

(01) ReentrantReadWriteLock实现了ReadWriteLock接口。ReadWriteLock是一个读写锁的接口,提供了"获取读锁的readLock()函数" 和 "获取写锁的writeLock()函数"。

(02) ReentrantReadWriteLock中包含:sync对象,读锁readerLock和写锁writerLock。读锁ReadLock和写锁WriteLock都实现了Lock接口。读锁ReadLock和写锁WriteLock中也都分别包含了"Sync对象",它们的Sync对象和ReentrantReadWriteLock的Sync对象 是一样的,就是通过sync,读锁和写锁实现了对同一个对象的访问。

(03) 和"ReentrantLock"一样,sync是Sync类型;而且,Sync也是一个继承于AQS的抽象类。Sync也包括"公平锁"FairSync和"非公平锁"NonfairSync。sync对象是"FairSync"和"NonfairSync"中的一个,默认是"NonfairSync"。

其中,共享锁源码相关的代码如下:

public static class ReadLock implements Lock, java.io.Serializable {
  private static final long serialVersionUID = -5992448646407690164L;
  // ReentrantReadWriteLock的AQS对象
  private final Sync sync;

  protected ReadLock(ReentrantReadWriteLock lock) {
    sync = lock.sync;
  }

  // 获取“共享锁”
  public void lock() {
    sync.acquireShared(1);
  }

  // 如果线程是中断状态,则抛出一场,否则尝试获取共享锁。
  public void lockInterruptibly() throws InterruptedException {
    sync.acquireSharedInterruptibly(1);
  }

  // 尝试获取“共享锁”
  public boolean tryLock() {
    return sync.tryReadLock();
  }

  // 在指定时间内,尝试获取“共享锁”
  public boolean tryLock(long timeout, TimeUnit unit)
      throws InterruptedException {
    return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
  }

  // 释放“共享锁”
  public void unlock() {
    sync.releaseShared(1);
  }

  // 新建条件
  public Condition newCondition() {
    throw new UnsupportedOperationException();
  }

  public String toString() {
    int r = sync.getReadLockCount();
    return super.toString() +
      "[Read locks = " + r + "]";
  }
}

说明:

ReadLock中的sync是一个Sync对象,Sync继承于AQS类,即Sync就是一个锁。ReentrantReadWriteLock中也有一个Sync对象,而且ReadLock中的sync和ReentrantReadWriteLock中的sync是对应关系。即ReentrantReadWriteLock和ReadLock共享同一个AQS对象,共享同一把锁。

ReentrantReadWriteLock中Sync的定义如下:

final Sync sync;

下面,分别从“获取共享锁”和“释放共享锁”两个方面对共享锁进行说明。

获取共享锁

获取共享锁的思想(即lock函数的步骤),是先通过tryAcquireShared()尝试获取共享锁。尝试成功的话,则直接返回;尝试失败的话,则通过doAcquireShared()不断的循环并尝试获取锁,若有需要,则阻塞等待。doAcquireShared()在循环中每次尝试获取锁时,都是通过tryAcquireShared()来进行尝试的。下面看看“获取共享锁”的详细流程。

1. lock()

lock()在ReadLock中,源码如下:

public void lock() {
  sync.acquireShared(1);
}

2. acquireShared()

Sync继承于AQS,acquireShared()定义在AQS中。源码如下:

public final void acquireShared(int arg) {
  if (tryAcquireShared(arg) < 0)
    doAcquireShared(arg);
}

说明:acquireShared()首先会通过tryAcquireShared()来尝试获取锁。

尝试成功的话,则不再做任何动作(因为已经成功获取到锁了)。

尝试失败的话,则通过doAcquireShared()来获取锁。doAcquireShared()会获取到锁了才返回。

3. tryAcquireShared()

tryAcquireShared()定义在ReentrantReadWriteLock.java的Sync中,源码如下:

protected final int tryAcquireShared(int unused) {
  Thread current = Thread.currentThread();
  // 获取“锁”的状态
  int c = getState();
  // 如果“锁”是“互斥锁”,并且获取锁的线程不是current线程;则返回-1。
  if (exclusiveCount(c) != 0 &&
    getExclusiveOwnerThread() != current)
    return -1;
  // 获取“读取锁”的共享计数
  int r = sharedCount(c);
  // 如果“不需要阻塞等待”,并且“读取锁”的共享计数小于MAX_COUNT;
  // 则通过CAS函数更新“锁的状态”,将“读取锁”的共享计数+1。
  if (!readerShouldBlock() &&
    r < MAX_COUNT &&
    compareAndSetState(c, c + SHARED_UNIT)) {
    // 第1次获取“读取锁”。
    if (r == 0) {
      firstReader = current;
      firstReaderHoldCount = 1;
    // 如果想要获取锁的线程(current)是第1个获取锁(firstReader)的线程
    } else if (firstReader == current) {
      firstReaderHoldCount++;
    } else {
      // HoldCounter是用来统计该线程获取“读取锁”的次数。
      HoldCounter rh = cachedHoldCounter;
      if (rh == null || rh.tid != current.getId())
        cachedHoldCounter = rh = readHolds.get();
      else if (rh.count == 0)
        readHolds.set(rh);
      // 将该线程获取“读取锁”的次数+1。
      rh.count++;
    }
    return 1;
  }
  return fullTryAcquireShared(current);
}

说明:tryAcquireShared()的作用是尝试获取“共享锁”。

如果在尝试获取锁时,“不需要阻塞等待”并且“读取锁的共享计数小于MAX_COUNT”,则直接通过CAS函数更新“读取锁的共享计数”,以及将“当前线程获取读取锁的次数+1”。否则,通过fullTryAcquireShared()获取读取锁。

4. fullTryAcquireShared()

fullTryAcquireShared()在ReentrantReadWriteLock中定义,源码如下:

final int fullTryAcquireShared(Thread current) {
  HoldCounter rh = null;
  for (;;) {
    // 获取“锁”的状态
    int c = getState();
    // 如果“锁”是“互斥锁”,并且获取锁的线程不是current线程;则返回-1。
    if (exclusiveCount(c) != 0) {
      if (getExclusiveOwnerThread() != current)
        return -1;
    // 如果“需要阻塞等待”。
    // (01) 当“需要阻塞等待”的线程是第1个获取锁的线程的话,则继续往下执行。
    // (02) 当“需要阻塞等待”的线程获取锁的次数=0时,则返回-1。
    } else if (readerShouldBlock()) {
      // 如果想要获取锁的线程(current)是第1个获取锁(firstReader)的线程
      if (firstReader == current) {
      } else {
        if (rh == null) {
          rh = cachedHoldCounter;
          if (rh == null || rh.tid != current.getId()) {
            rh = readHolds.get();
            if (rh.count == 0)
              readHolds.remove();
          }
        }
        // 如果当前线程获取锁的计数=0,则返回-1。
        if (rh.count == 0)
          return -1;
      }
    }
    // 如果“不需要阻塞等待”,则获取“读取锁”的共享统计数;
    // 如果共享统计数超过MAX_COUNT,则抛出异常。
    if (sharedCount(c) == MAX_COUNT)
      throw new Error("Maximum lock count exceeded");
    // 将线程获取“读取锁”的次数+1。
    if (compareAndSetState(c, c + SHARED_UNIT)) {
      // 如果是第1次获取“读取锁”,则更新firstReader和firstReaderHoldCount。
      if (sharedCount(c) == 0) {
        firstReader = current;
        firstReaderHoldCount = 1;
      // 如果想要获取锁的线程(current)是第1个获取锁(firstReader)的线程,
      // 则将firstReaderHoldCount+1。
      } else if (firstReader == current) {
        firstReaderHoldCount++;
      } else {
        if (rh == null)
          rh = cachedHoldCounter;
        if (rh == null || rh.tid != current.getId())
          rh = readHolds.get();
        else if (rh.count == 0)
          readHolds.set(rh);
        // 更新线程的获取“读取锁”的共享计数
        rh.count++;
        cachedHoldCounter = rh; // cache for release
      }
      return 1;
    }
  }
}

说明:fullTryAcquireShared()会根据“是否需要阻塞等待”,“读取锁的共享计数是否超过限制”等等进行处理。如果不需要阻塞等待,并且锁的共享计数没有超过限制,则通过CAS尝试获取锁,并返回1。

5. doAcquireShared()

doAcquireShared()定义在AQS函数中,源码如下:

private void doAcquireShared(int arg) {
  // addWaiter(Node.SHARED)的作用是,创建“当前线程”对应的节点,并将该线程添加到CLH队列中。
  final Node node = addWaiter(Node.SHARED);
  boolean failed = true;
  try {
    boolean interrupted = false;
    for (;;) {
      // 获取“node”的前一节点
      final Node p = node.predecessor();
      // 如果“当前线程”是CLH队列的表头,则尝试获取共享锁。
      if (p == head) {
        int r = tryAcquireShared(arg);
        if (r >= 0) {
          setHeadAndPropagate(node, r);
          p.next = null; // help GC
          if (interrupted)
            selfInterrupt();
          failed = false;
          return;
        }
      }
      // 如果“当前线程”不是CLH队列的表头,则通过shouldParkAfterFailedAcquire()判断是否需要等待,
      // 需要的话,则通过parkAndCheckInterrupt()进行阻塞等待。若阻塞等待过程中,线程被中断过,则设置interrupted为true。
      if (shouldParkAfterFailedAcquire(p, node) &&
        parkAndCheckInterrupt())
        interrupted = true;
    }
  } finally {
    if (failed)
      cancelAcquire(node);
  }
}

说明:doAcquireShared()的作用是获取共享锁。

它会首先创建线程对应的CLH队列的节点,然后将该节点添加到CLH队列中。CLH队列是管理获取锁的等待线程的队列。
如果“当前线程”是CLH队列的表头,则尝试获取共享锁;否则,则需要通过shouldParkAfterFailedAcquire()判断是否阻塞等待,需要的话,则通过parkAndCheckInterrupt()进行阻塞等待。

doAcquireShared()会通过for循环,不断的进行上面的操作;目的就是获取共享锁。需要注意的是:doAcquireShared()在每一次尝试获取锁时,是通过tryAcquireShared()来执行的!

释放共享锁

释放共享锁的思想,是先通过tryReleaseShared()尝试释放共享锁。尝试成功的话,则通过doReleaseShared()唤醒“其他等待获取共享锁的线程”,并返回true;否则的话,返回flase。

1. unlock()

public void unlock() {
  sync.releaseShared(1);
}

说明:该函数实际上调用releaseShared(1)释放共享锁。

2. releaseShared()

releaseShared()在AQS中实现,源码如下:

public final boolean releaseShared(int arg) {
  if (tryReleaseShared(arg)) {
    doReleaseShared();
    return true;
  }
  return false;
}

说明:releaseShared()的目的是让当前线程释放它所持有的共享锁。

它首先会通过tryReleaseShared()去尝试释放共享锁。尝试成功,则直接返回;尝试失败,则通过doReleaseShared()去释放共享锁。

3. tryReleaseShared()

tryReleaseShared()定义在ReentrantReadWriteLock中,源码如下:

protected final boolean tryReleaseShared(int unused) {
  // 获取当前线程,即释放共享锁的线程。
  Thread current = Thread.currentThread();
  // 如果想要释放锁的线程(current)是第1个获取锁(firstReader)的线程,
  // 并且“第1个获取锁的线程获取锁的次数”=1,则设置firstReader为null;
  // 否则,将“第1个获取锁的线程的获取次数”-1。
  if (firstReader == current) {
    // assert firstReaderHoldCount > 0;
    if (firstReaderHoldCount == 1)
      firstReader = null;
    else
      firstReaderHoldCount--;
  // 获取rh对象,并更新“当前线程获取锁的信息”。
  } else {

    HoldCounter rh = cachedHoldCounter;
    if (rh == null || rh.tid != current.getId())
      rh = readHolds.get();
    int count = rh.count;
    if (count <= 1) {
      readHolds.remove();
      if (count <= 0)
        throw unmatchedUnlockException();
    }
    --rh.count;
  }
  for (;;) {
    // 获取锁的状态
    int c = getState();
    // 将锁的获取次数-1。
    int nextc = c - SHARED_UNIT;
    // 通过CAS更新锁的状态。
    if (compareAndSetState(c, nextc))
      return nextc == 0;
  }
}

说明:tryReleaseShared()的作用是尝试释放共享锁。

4. doReleaseShared()

doReleaseShared()定义在AQS中,源码如下:

private void doReleaseShared() {
  for (;;) {
    // 获取CLH队列的头节点
    Node h = head;
    // 如果头节点不为null,并且头节点不等于tail节点。
    if (h != null && h != tail) {
      // 获取头节点对应的线程的状态
      int ws = h.waitStatus;
      // 如果头节点对应的线程是SIGNAL状态,则意味着“头节点的下一个节点所对应的线程”需要被unpark唤醒。
      if (ws == Node.SIGNAL) {
        // 设置“头节点对应的线程状态”为空状态。失败的话,则继续循环。
        if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0))
          continue;
        // 唤醒“头节点的下一个节点所对应的线程”。
        unparkSuccessor(h);
      }
      // 如果头节点对应的线程是空状态,则设置“文件点对应的线程所拥有的共享锁”为其它线程获取锁的空状态。
      else if (ws == 0 &&
           !compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
        continue;        // loop on failed CAS
    }
    // 如果头节点发生变化,则继续循环。否则,退出循环。
    if (h == head)          // loop if head changed
      break;
  }
}

说明:doReleaseShared()会释放“共享锁”。它会从前往后的遍历CLH队列,依次“唤醒”然后“执行”队列中每个节点对应的线程;最终的目的是让这些线程释放它们所持有的锁。

公平共享锁和非公平共享锁

和互斥锁ReentrantLock一样,ReadLock也分为公平锁和非公平锁。

公平锁和非公平锁的区别,体现在判断是否需要阻塞的函数readerShouldBlock()是不同的。

公平锁的readerShouldBlock()的源码如下:

final boolean readerShouldBlock() {
  return hasQueuedPredecessors();
}

在公平共享锁中,如果在当前线程的前面有其他线程在等待获取共享锁,则返回true;否则,返回false。

非公平锁的readerShouldBlock()的源码如下:

final boolean readerShouldBlock() {
  return apparentlyFirstQueuedIsExclusive();
}

在非公平共享锁中,它会无视当前线程的前面是否有其他线程在等待获取共享锁。只要该非公平共享锁对应的线程不为null,则返回true。

ReentrantReadWriteLock示例

 import java.util.concurrent.locks.ReadWriteLock;
 import java.util.concurrent.locks.ReentrantReadWriteLock; 

 public class ReadWriteLockTest1 { 

   public static void main(String[] args) {
     // 创建账户
     MyCount myCount = new MyCount("4238920615242830", 10000);
     // 创建用户,并指定账户
     User user = new User("Tommy", myCount); 

     // 分别启动3个“读取账户金钱”的线程 和 3个“设置账户金钱”的线程
     for (int i=0; i<3; i++) {
       user.getCash();
       user.setCash((i+1)*1000);
     }
   }
 } 

 class User {
   private String name;      //用户名
   private MyCount myCount;    //所要操作的账户
   private ReadWriteLock myLock;  //执行操作所需的锁对象 

   User(String name, MyCount myCount) {
     this.name = name;
     this.myCount = myCount;
     this.myLock = new ReentrantReadWriteLock();
   }

   public void getCash() {
     new Thread() {
       public void run() {
         myLock.readLock().lock();
         try {
           System.out.println(Thread.currentThread().getName() +" getCash start");
           myCount.getCash();
           Thread.sleep(1);
           System.out.println(Thread.currentThread().getName() +" getCash end");
         } catch (InterruptedException e) {
         } finally {
           myLock.readLock().unlock();
         }
       }
     }.start();
   }

   public void setCash(final int cash) {
     new Thread() {
       public void run() {
         myLock.writeLock().lock();
         try {
           System.out.println(Thread.currentThread().getName() +" setCash start");
           myCount.setCash(cash);
           Thread.sleep(1);
           System.out.println(Thread.currentThread().getName() +" setCash end");
         } catch (InterruptedException e) {
         } finally {
           myLock.writeLock().unlock();
         }
       }
     }.start();
   }
 }

 class MyCount {
   private String id;     //账号
   private int  cash;    //账户余额 

   MyCount(String id, int cash) {
     this.id = id;
     this.cash = cash;
   } 

   public String getId() {
     return id;
   } 

   public void setId(String id) {
     this.id = id;
   } 

   public int getCash() {
     System.out.println(Thread.currentThread().getName() +" getCash cash="+ cash);
     return cash;
   } 

   public void setCash(int cash) {
     System.out.println(Thread.currentThread().getName() +" setCash cash="+ cash);
     this.cash = cash;
   }
 }

运行结果:

Thread-0 getCash start
Thread-2 getCash start
Thread-0 getCash cash=10000
Thread-2 getCash cash=10000
Thread-0 getCash end
Thread-2 getCash end
Thread-1 setCash start
Thread-1 setCash cash=1000
Thread-1 setCash end
Thread-3 setCash start
Thread-3 setCash cash=2000
Thread-3 setCash end
Thread-4 getCash start
Thread-4 getCash cash=2000
Thread-4 getCash end
Thread-5 setCash start
Thread-5 setCash cash=3000
Thread-5 setCash end

结果说明:

(01) 观察Thread0和Thread-2的运行结果,我们发现,Thread-0启动并获取到“读取锁”,在它还没运行完毕的时候,Thread-2也启动了并且也成功获取到“读取锁”。

因此,“读取锁”支持被多个线程同时获取。

(02) 观察Thread-1,Thread-3,Thread-5这三个“写入锁”的线程。只要“写入锁”被某线程获取,则该线程运行完毕了,才释放该锁。

因此,“写入锁”不支持被多个线程同时获取。

时间: 2017-06-09

ReadWriteLock接口及其实现ReentrantReadWriteLock方法

Java并发包的locks包里的锁基本上已经介绍得差不多了,ReentrantLock重入锁是个关键,在清楚的了解了同步器AQS的运行机制后,实际上再分析这些锁就会显得容易得多,这章节主讲另外一个重要的锁--ReentrantReadWriteLock读写锁. ReentrantLock是一个独占锁,也就是说只能由一个线程获取锁,但如果场景是线程只做读的操作呢?这样ReentrantLock就不是很合适,读的线程并不需要保证其线程的安全性,任何一个线程都能去获取锁,只有这样才能尽可能地保证性能和

Java并发编程之显示锁ReentrantLock和ReadWriteLock读写锁

在Java5.0之前,只有synchronized(内置锁)和volatile. Java5.0后引入了显示锁ReentrantLock. ReentrantLock概况 ReentrantLock是可重入的锁,它不同于内置锁, 它在每次使用都需要显示的加锁和解锁, 而且提供了更高级的特性:公平锁, 定时锁, 有条件锁, 可轮询锁, 可中断锁. 可以有效避免死锁的活跃性问题.ReentrantLock实现了 Lock接口: 复制代码 代码如下: public interface Lock {  

详解Java多线程编程中互斥锁ReentrantLock类的用法

0.关于互斥锁 所谓互斥锁, 指的是一次最多只能有一个线程持有的锁. 在jdk1.5之前, 我们通常使用synchronized机制控制多个线程对共享资源的访问. 而现在, Lock提供了比synchronized机制更广泛的锁定操作, Lock和synchronized机制的主要区别: synchronized机制提供了对与每个对象相关的隐式监视器锁的访问, 并强制所有锁获取和释放均要出现在一个块结构中, 当获取了多个锁时, 它们必须以相反的顺序释放. synchronized机制对锁的释放是

Java并发编程如何降低锁粒度并实现性能优化

在高负载多线程应用中性能是非常重要的.为了达到更好的性能,开发者必须意识到并发的重要性.当我们需要使用并发时, 常常有一个资源必须被两个或多个线程共享. 在这种情况下,就存在一个竞争条件,也就是其中一个线程可以得到锁(锁与特定资源绑定),其他想要得到锁的线程会被阻塞.这个同步机制的实现是有代价的,为了向你提供一个好用的同步模型,JVM和操作系统都要消耗资源.有三个最重要的因素使并发的实现会消耗大量资源,它们是: 上下文切换 内存同步 阻塞 为了写出针对同步的优化代码,你必须认识到这三个因素以及如

Java并发编程之重入锁与读写锁

重入锁 重入锁,顾名思义,就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁.重进入是指任意线程在获取到锁之后能够再次获取该锁而不会被锁阻塞,该特性的实现需要解决以下两个问题. 1.线程再次获取锁.锁需要去识别获取锁的线程是否为当前占据锁的线程,如果是,则再次成功获取. 2.锁的最终释放.线程重复n次获取了锁,随后在第n次释放该锁后,其他线程能够获取到该锁.锁的最终释放要求锁对于获取进行计数自增,计数表示当前锁被重复获取的次数,而锁被释放时,计数自减,当计数等于0时表示锁已经成功释放

java并发编程专题(五)----详解(JUC)ReentrantLock

上一节我们了解了Lock接口的一些简单的说明,知道Lock锁的常用形式,那么这节我们正式开始进入JUC锁(java.util.concurrent包下的锁,简称JUC锁).下面我们来看一下Lock最常用的实现类ReentrantLock. 1.ReentrantLock简介 由单词意思我们可以知道这是可重入的意思.那么可重入对于锁而言到底意味着什么呢?简单来说,它有一个与锁相关的获取计数器,如果拥有锁的某个线程再次得到锁,那么获取计数器就加1,然后锁需要被释放两次才能获得真正释放.这模仿了 sy

java并发编程专题(四)----浅谈(JUC)Lock锁

首先我们来回忆一下上一节讲过的synchronized关键字,该关键字用于给代码段或方法加锁,使得某一时刻它修饰的方法或代码段只能被一个线程访问.那么试想,当我们遇到这样的情况:当synchronized修饰的方法或代码段因为某种原因(IO异常或是sleep方法)被阻塞了,但是锁有没有被释放,那么其他线程除了等待以外什么事都做不了.当我们遇到这种情况该怎么办呢?我们今天讲到的Lock锁将有机会为此行使他的职责. 1.为什么需要Lock synchronized 是Java 语言层面的,是内置的关

java并发编程实例分析

java并发编程是java程序设计语言的一块重点,在大部分的业务场景中都需要并发编程. 比如:并发的去处理http请求,这样就可以使得一台机器同时处理多个请求,大大提高业务的响应效率,从而使用用户体验更加流畅. java如何并发编程,要注意以下几个方面: 1.java语言中的多线程操作:创建和启动线程的几种方式. 2.共享变量的同步问题,要保证线程安全,辨别哪些变量是线程安全的.那些变量是线程不安全的,对于不安全的变量我们要想办法让其同步,一般也就是加锁. 3.线程锁:包括方法锁和synchro

java并发编程之同步器代码示例

同步器是一些使线程能够等待另一个线程的对象,允许它们协调动作.最常用的同步器是CountDownLatch和Semaphore,不常用的是Barrier和Exchanger 队列同步器AbstractQueuedSynchronizer是用来构建锁或者其他同步组件的基础框架,它内部使用了一个volatiole修饰的int类型的成员变量state来表示同步状态,通过内置的FIFO队列来完成资源获取线程的排队工作. 同步器的主要使用方式是继承,子类通过继承同步器并实现它的抽象方法来管理同步状态,在抽

java并发编程专题(七)----(JUC)ReadWriteLock的用法

前面我们已经分析过JUC包里面的Lock锁,ReentrantLock锁和semaphore信号量机制.Lock锁实现了比synchronized更灵活的锁机制,Reentrantlock是Lock的实现类,是一种可重入锁,都是每次只有一次线程对资源进行处理:semaphore实现了多个线程同时对一个资源的访问:今天我们要讲的ReadWriteLock锁将实现另外一种很重要的功能:读写分离锁. 假设你的程序中涉及到对一些共享资源的读和写操作,且写操作没有读操作那么频繁.在没有写操作的时候,两个线

java并发编程专题(六)----浅析(JUC)Semaphore

半路开始看的朋友可以回顾一下前几篇 java并发编程专题(一)----线程基础知识 java并发编程专题(二)----如何创建并运行java线程 java并发编程专题(三)----详解线程的同步 java并发编程专题(四)----浅谈(JUC)Lock锁 java并发编程专题(五)----详解(JUC)ReentrantLock Semaphore,从字面意义上我们知道他是信号量的意思.在java中,一个计数信号量维护了一个许可集.Semaphore 只对可用许可的号码进行计数,并采取相应的行动