对Python的多进程锁的使用方法详解

很多时候,我们需要在多个进程中同时写一个文件,如果不加锁机制,就会导致写文件错乱

这个时候,我们可以使用multiprocessing.Lock()

我一开始是这样使用的:

import multiprocessing
lock = multiprocessing.Lock()
class MatchProcess(multiprocessing.Process):
  def __init__(self, threadId, mfile, lock):
    multiprocessing.Process.__init__(self)
    self.threadId = threadId
    self.mfile = mfile
    self.lock = lock
  def run(self):
    while True:
       self.lock.acquire()
       try:
         self.mfile.write('111111111111111111' + '\n')
       finally:
         self.lock.release()

if __name__ == '__main__':
  mf = open('test.lst', 'w')
  for i in range(15):
    p = MatchProcess(i, mf, lock)
    p.start() 

发现这种方式,锁并没有起作用, 文件内容依然出现了错乱(注意,我这里写的1111是示例,我的代码实际写的其他内容)

所以这种方式,虽然lock通过参数传到了每个进程中,但是我们知道进程之间是不共享内存的,所以我理解应该是每个进程获得的锁其实是不同的, 所以无法对写文件起到加锁的效果

进程池是否可行呢,于是做了如下尝试

def run(line):
  lock.acquire()
    try:
      mfile.write('111111111111111111' + '\n')
  finally:
    lock.release()
sf = open('test.lst', 'r')
data_lst = list()
for line in sf:
  line = line.strip()
  data_lst.append(line)
pool = Pool(15)
pool.map_async(run, data_lst) #map_async方法会将data_lst这个可迭代的对象里面的每个元素依次传入run方法来执行
pool.close()
pool.join()
print 'over'

但是注意:

pool.close()
pool.join()

这两行代码必不可少,否则,主进程执行完毕后会退出,导致整个进程结束

所以在整个进程全部执行完毕后,才会打印出over

但是这种方式,发现,锁仍然不起作用

最后采用了如下方式:

def run(line):
  mfile = open('test2.lst', 'a')
  lock.acquire()
  try:
    mfile.write('111111111111111111' + '\n')
  finally:
    lock.release()

sf = open('test.lst', 'r')
data_lst = list()
for line in sf:
  line = line.strip()
  data_lst.append(line)

pList = []
for line in line_lst:
  p = multiprocessing.Process(target=run, args=(line, lock))
  p.start()
  pList.append(p)

for p in pList:
  p.join()

是亲测发现,这种方式,锁的确起作用了,在每次写入数据量很大的情况下,速度很慢

但是一个比较恶心的问题是,我一开始试图将文件打开后通过Process对象的args参数传入到run方法中,但是发现数据无法写入到文件中,见鬼,这个问题我还没搞明白

无耐,只能采取上面的笨方法,在每次写入的时候打开然后写入,这肯定不是明智的做法,如果有更好的办法,请留言我

也就是说,文件打开后传入,是无效的,那么可以将文件名传入,然后在run方法中每次写的时候先打开,写入后关闭应该也是可行的。

但是为什么我文章采用的第一种方式,也是文件打开后传入,却是可行的。

以上这篇对Python的多进程锁的使用方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2019-02-17

Python使用文件锁实现进程间同步功能【基于fcntl模块】

本文实例讲述了Python使用文件锁实现进程间同步功能.分享给大家供大家参考,具体如下: 简介 在实际应用中,会出现这种应用场景:希望shell下执行的脚本对某些竞争资源提供保护,避免出现冲突.本文将通过fcntl模块的文件整体上锁机制来实现这种进程间同步功能. fcntl系统函数介绍 Linux系统提供了文件整体上锁(flock)和更细粒度的记录上锁(fcntl)功能,底层功能均可由fcntl函数实现. 首先来了解记录上锁.记录上锁是读写锁的一种扩展类型,它可用于有亲缘关系或无亲缘关系的进程间

python并发编程多进程 互斥锁原理解析

运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的 互斥锁 但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端, 是可以的,而共享带来的是竞争,竞争带来的结果就是错乱 #并发运行,效率高,但竞争同一打印终端,带来了打印错乱 from multiprocessing import Process import time def task(name): print("%s 1" % name) time.

Python并发之多进程的方法实例代码

一,进程的理论基础 一个应用程序,归根结底是一堆代码,是静态的,而进程才是执行中的程序,在一个程序运行的时候会有多个进程并发执行. 进程和线程的区别: 进程是系统资源分配的基本单位. 一个进程内可以包含多个线程,属于一对多的关系,进程内的资源,被其内的线程共享 线程是进程运行的最小单位,如果说进程是完成一个功能,那么其线程就是完成这个功能的基本单位 进程间资源不共享,多进程切换资源开销,难度大,同一进程内的线程资源共享,多线程切换资源开销,难度小 进程与线程的共同点: 都是为了提高程序运行效率,

Python简单进程锁代码实例

先说说线程 在多线程中,为了保证共享资源的正确性,我们常常会用到线程同步技术. 将一些敏感操作变成原子操作,保证同一时刻多个线程中只有一个线程在执行这个原子操作. 我最常用的是互斥锁,也称独占锁.其次还有读写锁,信号量,条件变量等. 除此之外,我们在进程间通信时会用到信号,向某一个进程发送信号,该进程中设置信号处理函数,然后当该进程收到信号时,执行某些操作. 其实在线程中,也可以接受信号,利用这种机制,我们也可以用来实现线程同步.更多信息见 http://www.jb51.net/article

python基于mysql实现的简单队列以及跨进程锁实例详解

通常在我们进行多进程应用开发的过程中,不可避免的会遇到多个进程访问同一个资源(临界资源)的状况,这时候必须通过加一个全局性的锁,来实现资源的同步访问(即:同一时间里只能有一个进程访问资源). 举个例子如下: 假设我们用mysql来实现一个任务队列,实现的过程如下: 1. 在Mysql中创建Job表,用于储存队列任务,如下: create table jobs( id auto_increment not null primary key, message text not null, job_s

详解python并发获取snmp信息及性能测试

python & snmp 用python获取snmp信息有多个现成的库可以使用,其中比较常用的是netsnmp和pysnmp两个库.网上有较多的关于两个库的例子. 本文重点在于如何并发的获取snmp的数据,即同时获取多台机器的snmp信息. netsnmp 先说netsnmp.python的netsnmp,其实是来自于net-snmp包. python通过一个c文件调用net-snmp的接口获取数据. 因此,在并发获取多台机器的时候,不能够使用协程获取.因为使用协程,在get数据的时候,协程会

Python多线程编程(四):使用Lock互斥锁

前面已经演示了Python:使用threading模块实现多线程编程二两种方式起线程和Python:使用threading模块实现多线程编程三threading.Thread类的重要函数,这两篇文章的示例都是演示了互不相干的独立线程,现在我们考虑这样一个问题:假设各个线程需要访问同一公共资源,我们的代码该怎么写? 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest3 '''  impor

Python多线程编程(五):死锁的形成

前一篇文章Python:使用threading模块实现多线程编程四[使用Lock互斥锁]我们已经开始涉及到如何使用互斥锁来保护我们的公共资源了,现在考虑下面的情况– 如果有多个公共资源,在线程间共享多个资源的时候,如果两个线程分别占有一部分资源并且同时等待对方的资源,这会引起什么问题? 死锁概念 所谓死锁: 是指两个或两个以上的进程在执行过程中,因争夺资源而造成的一种互相等待的现象,若无外力作用,它们都将无法推进下去.此时称系统处于死锁状态或系统产生了死锁,这些永远在互相等待的进程称为死锁进程.

Python多线程编程之多线程加锁操作示例

本文实例讲述了Python多线程编程之多线程加锁操作.分享给大家供大家参考,具体如下: Python语言本身是支持多线程的,不像PHP语言. 下面的例子是多个线程做同一批任务,任务总是有task_num个,每次线程做一个任务(print),做完后继续取任务,直到所有任务完成为止. # -*- coding:utf-8 -*- #! python2 import threading start_task = 0 task_num = 10000 mu = threading.Lock() ###通

Python多线程编程(六):可重入锁RLock

考虑这种情况:如果一个线程遇到锁嵌套的情况该怎么办,这个嵌套是指当我一个线程在获取临界资源时,又需要再次获取. 根据这种情况,代码如下: 复制代码 代码如下: ''' Created on 2012-9-8   @author: walfred @module: thread.ThreadTest6 '''    import threading  import time    counter = 0  mutex = threading.Lock()    class MyThread(thr

Python多线程编程(一):threading模块综述

Python这门解释性语言也有专门的线程模型,Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,但暂时无法利用多处理器的优势.在Python中我们主要是通过thread和 threading这两个模块来实现的,其中Python的threading模块是对thread做了一些包装的,可以更加方便的被使用,所以我们使用 threading模块实现多线程编程.这篇文章我们主要来看看Python对多线程编程的支持. 在语言层面,Pyt

python多线程编程中的join函数使用心得

今天去辛集买箱包,下午挺晚才回来,又是恶心又是头痛.恶心是因为早上吃坏东西+晕车+回来时看到车祸现场,头痛大概是烈日和空调混合刺激而成.没有时间没有精神没有力气学习了,这篇博客就说说python中一个小小函数. 由于坑爹的学校坑爷的专业,多线程编程老师从来没教过,多线程的概念也是教的稀里糊涂,本人python也是菜鸟级别,所以遇到多线程的编程就傻眼了,别人用的顺手的join函数我却偏偏理解不来.早上在去辛集的路上想这个问题想到恶心,回来后继续写代码测试,终于有些理解了(python官方的英文解释

Python多线程编程(八):使用Event实现线程间通信

使用threading.Event可以实现线程间相互通信,之前的Python:使用threading模块实现多线程编程七[使用Condition实现复杂同步]我们已经初步实现了线程间通信的基本功能,但是更为通用的一种做法是使用threading.Event对象.使用threading.Event可以使一个线程等待其他线程的通知,我们把这个Event传递到线程对象中,Event默认内置了一个标志,初始值为False.一旦该线程通过wait()方法进入等待状态,直到另一个线程调用该Event的set

Python多线程编程(二):启动线程的两种方法

在Python中我们主要是通过thread和threading这两个模块来实现的,其中Python的threading模块是对thread做了一些包装的,可以更加方便的被使用,所以我们使用threading模块实现多线程编程.一般来说,使用线程有两种模式,一种是创建线程要执行的函数,把这个函数传递进Thread对象里,让它来执行:另一种是直接从Thread继承,创建一个新的class,把线程执行的代码放到这个新的 class里. 将函数传递进Thread对象 复制代码 代码如下: '''  Cr

python多线程编程方式分析示例详解

在Python多线程中如何创建一个线程对象如果你要创建一个线程对象,很简单,只要你的类继承threading.Thread,然后在__init__里首先调用threading.Thread的__init__方法即可 复制代码 代码如下: import threading  class mythread(threading.Thread):  def __init__(self, threadname):  threading.Thread.__init__(self, name = thread

Python多线程编程(七):使用Condition实现复杂同步

目前我们已经会使用Lock去对公共资源进行互斥访问了,也探讨了同一线程可以使用RLock去重入锁,但是尽管如此我们只不过才处理了一些程序中简单的同步现象,我们甚至还不能很合理的去解决使用Lock锁带来的死锁问题.所以我们得学会使用更深层的解决同步问题. Python提供的Condition对象提供了对复杂线程同步问题的支持.Condition被称为条件变量,除了提供与Lock类似的acquire和release方法外,还提供了wait和notify方法. 使用Condition的主要方式为:线程