Python中使用装饰器来优化尾递归的示例

尾递归简介
尾递归是函数返回最后一个操作是递归调用,则该函数是尾递归。
递归是线性的比如factorial函数每一次调用都会创建一个新的栈(last-in-first-out)通过不断的压栈,来创建递归, 很容易导致栈的溢出。而尾递归则使用当前栈通过数据覆盖来优化递归函数。
阶乘函数factorial, 通过把计算值传递的方法完成了尾递归。但是python不支出编译器优化尾递归所以当递归多次的话还是会报错(学习用)。

eg:

def factorial(n, x):
  if n == 0:
    return x
  else:
    return factorial(n-1, n*x)

print factorial(5, 1) # 120

尾递归优化
这里用到了斐波那契数来作为例子.线性递归的算法由于太过一低效就被我们Pass掉了,我们先来看尾递过方式的调用:

(n,b1=1,b2=1,c=3):
 if n<3:
  return 1
 else:
  if n==c:
   return b1+b2
  else:
   return Fib(n,b1=b2,b2=b1+b2,c=c+1)

这段程序我们来测试一下,调用 Fib(1001)结果:

>>> def Fib(n,b1=1,b2=1,c=3):

...  if n<3:

...   return 1

...  else:

...   if n==c:

...    return b1+b2

...   else:

...    return Fib(n,b1=b2,b2=b1+b2,c=c+1)

... 

>>> Fib(1001)

70330367711422815821835254877183549770181269836358732742604905087154537118196933579742249494562611733487750449241765991088186363265450223647106012053374121273867339111198139373125598767690091902245245323403501L

>>>

如果我们用Fib(1002),结果,茶几了,如下:

 .....

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

 File "<stdin>", line 8, in Fib

RuntimeError: maximum recursion depth exceeded

>>>

好了,现在我们来尾递归优化

我们给刚才的Fib函数增加一个Decorator,如下:

@tail_call_optimized
def Fib(n,b1=1,b2=1,c=3):
 if n<3:
  return 1
 else:
  if n==c:
   return b1+b2
  else:
   return Fib(n,b1=b2,b2=b1+b2,c=c+1)

恩,就是这个@tail_call_optimized的装饰器 ,这个装饰器使Python神奇的打破了调用栈的限制。

这下即使我们Fib(20000),也能在780ms跑出结果(780ms是以前博文提到那台2000元的上网本跑出来的结果)

不卖关子了,下面我们来看看这段神奇的代码:

class TailRecurseException:
 def __init__(self, args, kwargs):
 self.args = args
 self.kwargs = kwargs 

def tail_call_optimized(g):
 """
 This function decorates a function with tail call
 optimization. It does this by throwing an exception
 if it is it's own grandparent, and catching such
 exceptions to fake the tail call optimization. 

 This function fails if the decorated
 function recurses in a non-tail context.
 """
 def func(*args, **kwargs):
 f = sys._getframe()
 if f.f_back and f.f_back.f_back and f.f_back.f_back.f_code == f.f_code:
  raise TailRecurseException(args, kwargs)
 else:
  while 1:
  try:
   return g(*args, **kwargs)
  except TailRecurseException, e:
   args = e.args
   kwargs = e.kwargs
 func.__doc__ = g.__doc__
 return func

使用的方法前面已经展示了,令我感到大开眼界的是,作者用了抛出异常然后自己捕获的方式来打破调用栈的增长,简直是太匪夷所思了。而且效率问题,和直接尾递归Fib相比大概造成了五倍的时间开销。

最后很不可思议的,尾递归优化的目的达成了。

时间: 2016-06-16

深入理解Python中装饰器的用法

因为函数或类都是对象,它们也能被四处传递.它们又是可变对象,可以被更改.在函数或类对象创建后但绑定到名字前更改之的行为为装饰(decorator). "装饰器"后隐藏了两种意思--一是函数起了装饰作用,例如,执行真正的工作,另一个是依附于装饰器语法的表达式,例如,at符号和装饰函数的名称. 函数可以通过函数装饰器语法装饰: @decorator # ② def function(): # ① pass 函数以标准方式定义.① 以@做为定义为装饰器函数前缀的表达式②.在 @ 后的部分必须

Python编程中装饰器的使用示例解析

装饰函数和方法 我们先定义两个简单的数学函数,一个用来计算平方和,一个用来计算平方差: # get square sum def square_sum(a, b): return a**2 + b**2 # get square diff def square_diff(a, b): return a**2 - b**2 print(square_sum(3, 4)) print(square_diff(3, 4)) 在拥有了基本的数学功能之后,我们可能想为函数增加其它的功能,比如打印输入.我们

深入学习Python中的装饰器使用

装饰器 vs 装饰器模式 首先,大家需要明白的是使用装饰器这个词可能会有不少让大家担忧的地方,因为它很容易和设计模式这本书里面的装饰器模式发生混淆.曾经一度考虑给这个新的功能取一些其它的术语名称,但是装饰器最终还是胜出了. 的确,你可以使用python装饰器来实现装饰器模式,但这绝对是它很小的一部分功能,有点暴殄天物.对于python装饰器,我觉得它是最接近宏的存在. 宏的历史 宏有有着非常悠久的历史,不过大多数人可能会有使用C语言预处理宏的经验.但是,对于C语言里的宏来说,它存在一些问题,(1

实例讲解Python编程中@property装饰器的用法

取值和赋值 class Actress(): def __init__(self): self.name = 'TianXin' self.age = 5 类Actress中有两个成员变量name和age.在外部对类的成员变量的操作,主要包括取值和赋值.简单的取值操作是x=object.var,简单的赋值操作是object.var=value. >>> actress = Actress() >>> actress.name #取值操作 'TianXin' >&g

python装饰器初探(推荐)

一.含有一个装饰器 #encoding: utf-8 ############含有一个装饰器######### def outer(func): def inner(*args, **kwargs):#要装饰f1(),这里用这俩形式参数,可以接受任意个参数,不管f1定义几个参数 print "1" r = func(*args, **kwargs)#这里要用func,不要用f1 print "2" return r return inner @outer #这里ou

python中函数总结之装饰器闭包详解

1.前言 函数也是一个对象,从而可以增加属性,使用句点来表示属性. 如果内部函数的定义包含了在外部函数中定义的对象的引用(外部对象可以是在外部函数之外),那么内部函数被称之为闭包. 2.装饰器 装饰器就是包装原来的函数,从而在不需要修改原来代码的基础之上,可以做更多的事情. 装饰器语法如下: @deco2 @deco1 def func(arg1,arg2...): pass 这个表示了有两个装饰器的函数,那么表示的含义为:func = deco2(deco1(func)) 无参装饰器语法如下:

Python的装饰器用法学习笔记

在python中常看到在定义函数是使用@func. 这就是装饰器, 装饰器是把一个函数作为参数的函数,常常用于扩展已有函数,即不改变当前函数状态下增加功能. def run(): print "I'm run." 我有这么一个函数, 我想知道这个函数什么时候开始什么时候结束. 我应该这么写 def run(): print time.ctime() print "I'm run." print time.ctime() 但是如果不允许修改函数的话就需要装饰器了 de

python函数装饰器用法实例详解

本文实例讲述了python函数装饰器用法.分享给大家供大家参考.具体如下: 装饰器经常被用于有切面需求的场景,较为经典的有插入日志.性能测试.事务处理等.装饰器是解决这类问题的绝佳设计, 有了装饰器,我们就可以抽离出大量函数中与函数功能本身无关的雷同代码并继续重用.概括的讲,装饰器的作用就是为已经存在的对象添加额外的功能. #! coding=utf-8 import time def timeit(func): def wrapper(a): start = time.clock() func

python类装饰器用法实例

本文实例讲述了python类装饰器用法.分享给大家供大家参考.具体如下: #!coding=utf-8 registry = {} def register(cls): registry[cls.__clsid__] = cls return cls @register class Foo(object): __clsid__ = '123-456' def bar(self): pass print registry 运行结果如下: {'123-456': <class '__main__.F

Python多层装饰器用法实例分析

本文实例讲述了Python多层装饰器用法.分享给大家供大家参考,具体如下: 前言 Python 的装饰器能够在不破坏函数原本结构的基础上,对函数的功能进行补充.当我们需要对一个函数补充不同的功能,可能需要用到多层的装饰器.在我的使用过程中,遇到了两种装饰器层叠的情况,这里把这两种情况写下来,作为踩坑记录. 情况1 def A(funC): def decorated_C(funE): def decorated_E_by_CA(*args, **kwargs): out = funC(funE)

Python中装饰器学习总结

本文研究的主要内容是Python中装饰器相关学习总结,具体如下. 装饰器(decorator)功能 引入日志 函数执行时间统计 执行函数前预备处理 执行函数后清理功能 权限校验等场景 缓存 装饰器示例 例1:无参数的函数 from time import ctime, sleep def timefun(func): def wrappedfunc(): print("%s called at %s"%(func.__name__, ctime())) func() return wr

Python装饰器用法示例小结

本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 下面的程序示例了python装饰器的使用: 示例一: def outer(fun): print fun def wrapper(arg): result=fun(arg) print 'over!' return result return wrapper @outer def func1(arg): print 'func1',arg return 'very good!' response=func1('python'

python装饰器深入学习

什么是装饰器 在我们的软件产品升级时,常常需要给各个函数新增功能,而在我们的软件产品中,相同的函数可能会被调用上百次,这种情况是很常见的,如果我们一个个的修改,那我们的码农岂不要挂掉了(有人就说了 ,你笨呀,修改函数定义不就行了!同学,你醒醒吧,如果要新加的功能会修改参数,或者返回值呢?).这个时候,就是我们装饰器大显神通的时候了.装饰器就可以实现,在不改变原函数的调用形式下(即函数的透明化处理),给函数新增功能的作用.如何实现,以及实现原理,下文会详解. 装饰器遵循的原则 装饰器,顾名思义就是

Python中的装饰器用法详解

本文实例讲述了Python中的装饰器用法.分享给大家供大家参考.具体分析如下: 这里还是先由stackoverflow上面的一个问题引起吧,如果使用如下的代码: 复制代码 代码如下: @makebold @makeitalic def say():    return "Hello" 打印出如下的输出: <b><i>Hello<i></b> 你会怎么做?最后给出的答案是: 复制代码 代码如下: def makebold(fn):    

深入浅出分析Python装饰器用法

本文实例讲述了Python装饰器用法.分享给大家供大家参考,具体如下: 用类作为装饰器 示例一 最初代码: class bol(object): def __init__(self, func): self.func = func def __call__(self): return "<b>{}</b>".format(self.func()) class ita(object): def __init__(self, func): self.func = f

Python装饰器入门学习教程(九步学习)

装饰器(decorator)是一种高级Python语法.装饰器可以对一个函数.方法或者类进行加工.在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包中,我们见到函数对象作为某一个函数的返回结果.相对于其它方式,装饰器语法简单,代码可读性高.因此,装饰器在Python项目中有广泛的应用. 这是在Python学习小组上介绍的内容,现学现卖.多练习是好的学习方式. 第一步:最简单的函数,准备附加额外功能 # -*- coding:gbk -*- '''示例1: 最简单的函数,表