python matplotlib中的subplot函数使用详解

python里面的matplotlib.pylot是大家比较常用的,功能也还不错的一个包。基本框架比较简单,但是做一个功能完善且比较好看整洁的图,免不了要网上查找一些函数。于是,为了节省时间,可以一劳永逸。我把常用函数作了一个总结,最后写了一个例子,以后基本不用怎么改了。

一、作图流程:

1.准备数据, , 3作图, 4定制, 5保存, 6显示

1.数据可以是numpy数组,也可以是list

2创建画布:

import matplotlib.pyplot as plt
#figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)

#num:图像编号或名称,数字为编号 ,字符串为名称
#figsize:指定figure的宽和高,单位为英寸;
#dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 ,1英寸等于2.5cm,A4纸是 21*30cm的纸张
#facecolor:背景颜色
#edgecolor:边框颜色
#frameon:是否显示边

fig = plt.figure()
fig = plt.figure(figsize=(8,6), dpi=80) 

fig.add_axes()
fig, axes = plt.subplos(nrows = 2, ncols = 2) #axes是长度为4的列表

3、作图路线

一维数据:

axes[0, 0].plot(x, y)
axes[0,1].bar([1,2,3], [2,4,8])
axes[0,2].barh([1,2,3], [2,4,8])
axes[1,0].axhline(0.45)
axes[1, 1].scatter(x, y)
axes[1,2].axvline(0.65)
axes[2,0].fill(x,y, color = 'blue')
axes[2,1].fill_between(x,y, color = 'blue')
axes[2,2].violinplot(y)
axes[0,3].arrow(0,0,0.5,0.5)
axes[1,3].quiver(x,y)

4, 定制

plt.plot(x,y, alpha=0.4, c = 'blue', maker = 'o')
#颜色,标记,透明度

# 显示数学文本

t = np.arange(0.0, 2.0, 0.01)
s = np.sin(2*np.pi*t)

plt.plot(t,s)
plt.title(r'$\alpha_i > \beta_i$', fontsize=20)
plt.text(1, -0.6, r'$\sum_{i=0}^\infty x_i$', fontsize=20)
plt.text(0.6, 0.6, r'$\mathcal{A}\mathrm{sin}(2 \omega t)$',
     fontsize=20)
plt.xlabel('time (s)')
plt.ylabel('volts (mV)')

fig = plt.figure()
fig.suptitle('bold figure suptitle', fontsize=14, fontweight='bold')

ax = fig.add_subplot(111)
fig.subplots_adjust(top=0.85)
ax.set_title('axes title')

ax.set_xlabel('xlabel')
ax.set_ylabel('ylabel')

ax.text(3, 8, 'boxed italics text in data coords', style='italic',
    bbox={'facecolor':'red', 'alpha':0.5, 'pad':10})

ax.text(2, 6, r'an equation: $E=mc^2$', fontsize=15)

ax.text(3, 2, u'unicode: Institut f\374r Festk\366rperphysik')

ax.text(0.95, 0.01, 'colored text in axes coords',
    verticalalignment='bottom', horizontalalignment='right',
    transform=ax.transAxes,
    color='green', fontsize=15)

ax.plot([2], [1], 'o')

# 注释
ax.annotate('我是注释啦', xy=(2, 1), xytext=(3, 4),color='r',size=15,
      arrowprops=dict(facecolor='g', shrink=0.05))

ax.axis([0, 10, 0, 10])

5, 保存显示

plt.savefig("1.png")
plt.savefig("1.png", trainsparent =True)
plt.show()

二、部分函数使用详解:

1, fig.add_subplot(numrows, numcols, fignum) ####三个参数,分别代表子图的行数,列数,图索引号。 eg: ax = fig.add_subplot(2, 3, 1) (or ,ax = fig.add_subplot(231))

2, plt.subplots()使用

x = np.linspace(0, 2*np.pi,400)
y = np.sin(x**2)
fig, ax = plt.subplots()
ax.plot(x, y)
ax.set_title('Simple plot')

# Creates two subplots and unpacks the output array immediately
#fig = plt.figure(figsize=(6,6))
f, (ax1, ax2) = plt.subplots(1, 2, sharey=True)
ax1.plot(x, y)
ax1.set_title('Sharing Y axis')
ax2.scatter(x, y)

# Creates four polar axes, and accesses them through the returned array
fig, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
axes[0, 0].plot(x, y)
axes[1, 1].scatter(x, y)

# Share a X axis with each column of subplots
plt.subplots(2, 2, sharex='col')

# Share a Y axis with each row of subplots
plt.subplots(2, 2, sharey='row')

# Share both X and Y axes with all subplots
plt.subplots(2, 2, sharex='all', sharey='all')

# Note that this is the same as
plt.subplots(2, 2, sharex=True, sharey=True)

# Creates figure number 10 with a single subplot
# and clears it if it already exists.
fig, ax=plt.subplots(num=10, clear=True)

3.plt.legend()

plt.legend(loc='String or Number', bbox_to_anchor=(num1, num2))
plt.legend(loc='upper center', bbox_to_anchor (0.6,0.95),ncol=3,fancybox=True,shadow=True)
#bbox_to_anchor被赋予的二元组中,第一个数值用于控制legend的左右移动,值越大越向右边移动,第二个数值用于控制legend的上下移动,值越大,越向上移动

以上这篇python matplotlib中的subplot函数使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们。

时间: 2020-01-18

使用python 的matplotlib 画轨道实例

如下所示: import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as mpatches from scipy import stats fig = plt.figure() ax = fig.add_subplot(111, xlim=(0, 10), ylim=(-4, 4)) sx=0;sy=0;r=1.5 ; circle = mpatches.Circle((sx,sy),r,ec='b

matplotlib绘制多个子图(subplot)的方法

在matplotlib下,一个Figure对象可以包含多个子图(Axes),可以使用subplot()快速绘制,其调用形式如下: subplot(numRows, numCols, plotNum) 图表的整个绘图区域被分成numRows行和numCols列,plotNum参数指定创建的Axes对象所在的区域,如何理解呢? 如果numRows = 3,numCols = 2,那整个绘制图表样式为3X2的图片区域,用坐标表示为(1,1),(1,2),(1,3),(2,1),(2,2),(2,3).

Python使用matplotlib绘制多个图形单独显示的方法示例

本文实例讲述了Python使用matplotlib绘制多个图形单独显示的方法.分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotlib.pyplot as plt #创建自变量数组 x= np.linspace(0,2*np.pi,500) #创建函数值数组 y1 = np.sin(x) y2 = np.cos(x) y3 = np.sin(x*x) #创建图形 plt.figure(1) ''' 意思是在一个2行2列共4个子图的图中,

Python使用add_subplot与subplot画子图操作示例

本文实例讲述了Python使用add_subplot与subplot画子图操作.分享给大家供大家参考,具体如下: 子图:就是在一张figure里面生成多张子图. Matplotlib对象简介 FigureCanvas  画布    Figure        图    Axes          坐标轴(实际画图的地方) 注意,pyplot的方式中plt.subplot()参数和面向对象中的add_subplot()参数和含义都相同. 使用面向对象的方式 #!/usr/bin/python #c

Python实现matplotlib显示中文的方法详解

本文实例讲述了Python实现matplotlib显示中文的方法.分享给大家供大家参考,具体如下: [注意] 可能与本文主题无关,不过我还是想指出来:使用matplotlib库时,下面两种导入方式是等价的(我指的是等效,当然这个说法可以商榷:) import matplotlib.pyplot as plt import pylab as plt [效果图] [方式一]FontProperties import matplotlib.pyplot as plt from matplotlib.f

对python pandas 画移动平均线的方法详解

数据文件 66001_.txt 内容格式: date,jz0,jz1,jz2,jz3,jz4,jz5 2012-12-28,0.9326,0.8835,1.0289,1.0027,1.1067,1.0023 2012-12-31,0.9435,0.8945,1.0435,1.0031,1.1229,1.0027 2013-01-04,0.9403,0.8898,1.0385,1.0032,1.1183,1.0030 ... ... pd_roll_mean1.py # -*- coding: u

python实现人性化显示金额数字实例详解

我们在开发过程中,有时候需要把float,int型等数字作为金额类型数字显示会出现很多问题,比如float会显示成 965868.4599999,int型没有小数位等各种各样的问题.我们需要进行转换显示,才能保证阅读人性化. 方法一: 这里只贴上主要代码: # 金额人性化 def humanized_amount(self, *args, **kwargs):     """     金额人性化,保留二位小数,再进行人性化显示     compel强制二位,默认True,  

python爬虫之BeautifulSoup 使用select方法详解

本文介绍了python爬虫之BeautifulSoup 使用select方法详解 ,分享给大家.具体如下: <html><head><title>The Dormouse's story</title></head> <body> <p class="title" name="dromouse"><b>The Dormouse's story</b></

对python dataframe逻辑取值的方法详解

我遇到的一个小需求,就是希望通过判断pandas dataframe中一列的值在两个条件范围(比如下面代码中所描述的逻辑,取小于u-3ε和大于u+3ε的值),然后取出dataframe中的所有符合条件的值,这个需求的解决与普通的iloc.loc.ix的方式不同,所以我想分享一下,希望可以帮到遇到这个困难的朋友们,下面是我的实例代码: doc[~((doc.iloc[:,141:142]<(mean_value-3*std_value))&(doc.iloc[:,141:142]>(me

对Python获取屏幕截图的4种方法详解

Python获取电脑截图有多种方式,具体如下: PIL中的ImageGrab模块 windows API PyQt pyautogui PIL中的ImageGrab模块 import time import numpy as np from PIL import ImageGrab img = ImageGrab.grab(bbox=(100, 161, 1141, 610)) img = np.array(img.getdata(), np.uint8).reshape(img.size[1]

对Python的多进程锁的使用方法详解

很多时候,我们需要在多个进程中同时写一个文件,如果不加锁机制,就会导致写文件错乱 这个时候,我们可以使用multiprocessing.Lock() 我一开始是这样使用的: import multiprocessing lock = multiprocessing.Lock() class MatchProcess(multiprocessing.Process): def __init__(self, threadId, mfile, lock): multiprocessing.Proces

对Python之gzip文件读写的方法详解

gzip文件读写的时候需要用到Python的gzip模块. 具体使用如下: # -*- coding: utf-8 -*- import gzip # 写文件 f_out = gzip.open("xxx.gz", "wb") # 读文件 # f_in = gzip.open("xxx.gz", "rb") for line in open("yyy.txt", "rb"): f_out

对Python定时任务的启动和停止方法详解

在python中我们可以使用APScheduler进行定时任务. APScheduler的具体编码这里就不介绍了.主要说下在终端中启动和停止任务. 一.运行计划任务的python脚本 如果我们在终端中直接执行的话,关闭终端窗口,Python任务就会中断,Python进程会被杀死,程序将停止运行.可以使用如下命令运行python脚本, python apschedulerscript.py & 这样执行后及时关闭终端窗口,程序依旧运行. 二.停止计划任务的Python脚本 如何停止呢,可使用如下方

对python pandas读取剪贴板内容的方法详解

我使用的Python3.5,32版本win764位系统,pandas0.19版本,使用df=pd.read_clipboard()的时候读不到数据,百度查找解决方法,找到了一个比较靠谱的 打开site-packages\pandas\io\clipboard.py 在 text = clipboard_get() 后面一行 加入这句: text = text.decode('UTF-8') 保存,然后就可以使用了 df=pd.read_clipboard() #变成正常的了 下次可以在其他地方复