Python中xrange与yield的用法实例分析

本文实例分析了Python中xrange与yield的用法。分享给大家供大家参考,具体如下:

range和xrange

Python提供了生成和返回整数序列的内置函数range及xrange,虽然这两个函数在功能上是差不多的,但其实现原理还是有差别的。range(n, m)返回的是一个从n到(m-1)的连续的整数列表,而xrange(n, m)返回的却是一个特殊的目的对象,即xrange对象本身.

>>> range(1, 5)
[1, 2, 3, 4]
>>> xrange(1, 5)
xrange(1, 5)
>>> type(xrange(1, 5))
<type 'xrange'>

但在python2.x中xrange返回的却不是一个迭代器,所以 x = xrange(n, m), x.next()会出错。假如需要返回一个迭代器,需要调用iter(xrange(….))

>>> x = iter(xrange(1, 5))
>>> x.next()
1
>>> x.next()
2

也就是,调用range和xrange程序在运行中占用的内存是不一样的。使用range,程序将首先生成一个list,然后再隐含调用list的iter获取元素。而使用xrange,程序在每次循环产生的是一个xrange对象,这个对象是iterable,根据返回的这个xrange对象我们可以获取元素。

生成器与yield

借助python的生成器,我们可以实现像内置xrange函数的生成器,但这个生成器返回的是一个又浮点型值组成的序列而不是整型序列。

>>> def frange(start, stop, step=1.0):
  while start < stop:
    yield start
    start += step
>>> frange(1.0, 5.0)
<generator object frange at 0x01343148>
>>> for i in frange(1.0, 5.0):
  print i,
1.0 2.0 3.0 4.0
>>> x = iter(frange(1.0, 5.0))
>>> x.next()
1.0
>>> x.next()
2.0

在python中,在函数体出现一个或者多个yield,这个函数就是生成器(generator)。在调用生成器的时,系统不会执行该生成器函数体。生成器被调用时将返回一个特殊的迭代器对象,这个个对象包含了生成器函数体、函数体的本地变量(包括函数体参数)以及当前的执行位置。

在调用返回的迭代器对象的next方法时,生成器将执行到下一个yield语句。

在执行完yield语句时,函数的执行将被“冻结”,保留执行的当前位置和未经使用的本地变量,并将yield语句的执行结果返回作为next方法的结果。继续调用next则继续调用yield,直到函数体运行结束或者执行了return语句(return语句不能含有表达式)。

最常见的,生成器可以用来构建迭代器。假如我们需要一个从1到N,然后从N到1的数字组成的序列,可以使用生成器:

>>> def updown(N):
  for x in xrange(1, N): yield x
  for x in xrange(N, 0, -1): yield x
>>> for i in updown(5):
  print i,

当一个函数需要返回一个列表的时候,使用生成器可能更灵活。生成器可以构建一个误解的迭代器,返回一个无限的结果序列。更进一步,生成器构建的迭代器执行的是懒计算:只有函数需要时才会计算结果。

所以假如需要对一个序列进行迭代功能,可以考虑迭代器。

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》

希望本文所述对大家Python程序设计有所帮助。

时间: 2017-12-23

Python 3中的yield from语法详解

前言 最近在捣鼓Autobahn,它有给出个例子是基于asyncio 的,想着说放到pypy3上跑跑看竟然就--失败了. pip install asyncio直接报invalid syntax,粗看还以为2to3处理的时 候有问题--这不能怪我,好-多package都是用2写了然后转成3的--结果发 现asyncio本来就只支持3.3+的版本,才又回头看代码,赫然发现一句 yield from:yield我知道,但是yield from是神马? PEP-380 好吧这个标题是我google出来

python异步编程 使用yield from过程解析

前言 yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就可以进行发送值和返回值了,yeild from结构的本质是简化嵌套的生产器,不理解这个是什么意思的话,下面我将用几个例子来对其使用方法进行讲解. yield from 是 Python3.3 后新加的语言结构.yield from的主要功能是打开双向通道,把最外层的调用方法与最内层的子生成器连接起来.这两者就可以进行发送值和返回

深入浅析Python中的yield关键字

前言 python中有一个非常有用的语法叫做生成器,所利用到的关键字就是yield.有效利用生成器这个工具可以有效地节约系统资源,避免不必要的内存占用. 一段代码 def fun(): for i in range(20): x=yield i print('good',x) if __name__ == '__main__': a=fun() a.__next__() x=a.send(5) print(x) 这段代码很短,但是诠释了yield关键字的核心用法,即逐个生成.在这里获取了两个生成

彻底理解Python中的yield关键字

阅读别人的python源码时碰到了这个yield这个关键字,各种搜索终于搞懂了,在此做一下总结: 通常的for...in...循环中,in后面是一个数组,这个数组就是一个可迭代对象,类似的还有链表,字符串,文件.它可以是mylist = [1, 2, 3],也可以是mylist = [x*x for x in range(3)].它的缺陷是所有数据都在内存中,如果有海量数据的话将会非常耗内存. 生成器是可以迭代的,但只可以读取它一次.因为用的时候才生成.比如 mygenerator = (x*x

python函数式编程学习之yield表达式形式详解

前言 yield的英文单词意思是生产,刚接触Python的时候感到非常困惑,一直没弄明白yield的用法.最近又重新学习了下,所以整理了下面这篇文章,供自己和大家学习参考,下面话不多说了,来一起看看详细的介绍吧. 先来看一个例子 def foo(): print("starting...") while True: res = yield print("res:",res) g = foo() next(g) 在上面的例子里,因为foo函数中有yield关键字,所以

python yield关键词案例测试

测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator 代码演示 例子1: 输出斐波那契數列前 N 个数 #!/usr/bin/env python # -*- coding:utf-8 -*- __author__ = 'shouke' def fab(max): n, a, b = 0, 0, 1 result =

由浅入深讲解python中的yield与generator

前言 本文将由浅入深详细介绍yield以及generator,包括以下内容:什么generator,生成generator的方法,generator的特点,generator基础及高级应用场景,generator使用中的注意事项.本文不包括enhanced generator即pep342相关内容,这部分内容在之后介绍. generator基础 在python的函数(function)定义中,只要出现了yield表达式(Yield expression),那么事实上定义的是一个generator

Python协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法详解

本文实例讲述了Python 协程操作之gevent(yield阻塞,greenlet),协程实现多任务(有规律的交替协作执行)用法.分享给大家供大家参考,具体如下: 实现多任务:进程消耗的资源最大,线程消耗的资源次之,协程消耗的资源最少(单线程). gevent实现协程,gevent是通过阻塞代码(例如网络延迟等)来自动切换要执行的任务,所以在进行IO密集型程序时(例如爬虫),使用gevent可以提高效率(有效利用网络延迟的时间去执行其他任务). GIL(全局解释器锁)是C语言版本的Python

python中yield的用法详解——最简单,最清晰的解释

首先我要吐槽一下,看程序的过程中遇见了yield这个关键字,然后百度的时候,发现没有一个能简单的让我懂的,讲起来真TM的都是头头是道,什么参数,什么传递的,还口口声声说自己的教程是最简单的,最浅显易懂的,我就想问没有有考虑过读者的感受. 接下来是正题: 首先,如果你还没有对yield有个初步分认识,那么你先把yield看做"return",这个是直观的,它首先是个return,普通的return是什么意思,就是在程序中返回某个值,返回之后程序就不再往下运行了.看做return之后再把它

python yield和Generator函数用法详解

这篇文章主要介绍了python yield和Generator函数用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 首先我们从一个小程序导入,各定一个list,找出其中的素数,我们会这样写 import math def is_Prims(number): if number == 2: return True //除2以外的所有偶数都不是素数 elif number % 2 == 0: return False //如果一个数能被除1和

对python 多线程中的守护线程与join的用法详解

多线程:在同一个时间做多件事 守护线程:如果在程序中将子线程设置为守护线程,则该子线程会在主线程结束时自动退出,设置方式为thread.setDaemon(True),要在thread.start()之前设置,默认是false的,也就是主线程结束时,子线程依然在执行. thread.join():在子线程完成运行之前,该子线程的父线程(一般就是主线程)将一直存在,也就是被阻塞 实例: #!/usr/bin/python # encoding: utf-8 import threading fro

Python在信息学竞赛中的运用及Python的基本用法(详解)

前言 众所周知,Python是一种非常实用的语言.但是由于其运算时的低效和解释型编译,在信息学竞赛中并不用于完成算法程序.但正如LRJ在<算法竞赛入门经典-训练指南>中所说的一样,如果会用Python,在进行一些小程序的编写,如数据生成器时将会非常方便,它的语法决定了其简约性.本文主要介绍一下简单的Python用法,不会深入. Python的安装和实用 Linux(以Ubuntu系统为例) 一般的Linux都自带了Python,在命令行中输入Python即可进入 如果没有出现上图的文字,可以使

Python装饰器(decorator)定义与用法详解

本文实例讲述了Python装饰器(decorator)定义与用法.分享给大家供大家参考,具体如下: 什么是装饰器(decorator) 简单来说,可以把装饰器理解为一个包装函数的函数,它一般将传入的函数或者是类做一定的处理,返回修改之后的对象.所以,我们能够在不修改原函数的基础上,在执行原函数前后执行别的代码.比较常用的场景有日志插入,事务处理等. 装饰器 最简单的函数,返回两个数的和 def calc_add(a, b): return a + b calc_add(1, 2) 但是现在又有新

python 函数中的内置函数及用法详解

今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是整数或浮点数等. print(abs(-18)) print(abs(0.15)) result: 18 0.15 2.all(iterable) 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False. print(all(['a','b',

基于Python中求和函数sum的用法详解

基于Python中求和函数sum的用法详解 今天在看<集体编程智慧>这本书的时候,看到一段Python代码,当时是百思不得其解,总觉得是书中排版出错了,后来去了解了一下sum的用法,看了一些Python大神写的代码后才发现是自己浅薄了!特在此记录一下.书中代码段摘录如下: from math import sqrt def sim_distance(prefs, person1, person2): # 得到shared_items的列表 si = {} for item in prefs[p

Python 中 Virtualenv 和 pip 的简单用法详解

本文介绍了Python 中 Virtualenv 和 pip 的简单用法详解,分享给大家,具体如下: 0X00 安装环境 我们在 Python 开发和学习过程中需要用到各种库,然后在各个不同的项目和作品里可能用的版本还不一样,正因为有这种问题的存在才催生了virtualenv的诞生.virtualenv 可以在电脑上创建一个虚拟环境,可以针对每一个项目创建一个虚拟环境,这样就不用担心各个不同的项目用不同版本的库的时候出现的冲突了. 下面的内容只适用于 Linux/OSX,未经 Windows 环

Python中index()和seek()的用法(详解)

1.index() 一般用处是在序列中检索参数并返回第一次出现的索引,没找到就会报错,比如: >>> t=tuple('Allen') >>> t ('A', 'l', 'l', 'e', 'n') >>> t.index('a') Traceback (most recent call last): File "<pyshell#2>", line 1, in <module> t.index('a') V