使用Python脚本对Linux服务器进行监控的教程

目前 Linux 下有一些使用 Python 语言编写的 Linux 系统监控工具 比如 inotify-sync(文件系统安全监控软件)、glances(资源监控工具)在实际工作中,Linux 系统管理员可以根据自己使用的服务器的具体情况编写一下简单实用的脚本实现对 Linux 服务器的监控。 本文介绍一下使用 Python 脚本实现对 Linux 服务器 CPU 内存 网络的监控脚本的编写。
Python 版本说明

Python 是由 Guido van Rossum 开发的、可免费获得的、非常高级的解释型语言。其语法简单易懂,而其面向对象的语义功能强大(但又灵活)。Python 可以广泛使用并具有高度的可移植性。本文 Linux 服务器是 Ubuntu 12.10, Python 版本 是 2.7 。如果是 Python 3.0 版本的语法上有一定的出入。另外这里笔者所说的 Python 是 CPython,CPython 是用 C 语言实现的 Python 解释器,也是官方的并且是最广泛使用的Python 解释器。除了 CPython 以外,还有用 Java 实现的 Jython 和用.NET 实现的 IronPython,使 Python方便地和 Java 程序、.NET 程序集成。另外还有一些实验性的 Python 解释器比如 PyPy。CPython 是使用字节码的解释器,任何程序源代码在执行之前先要编译成字节码。它还有和几种其它语言(包括 C 语言)交互的外部函数接口。
工作原理:基于/proc 文件系统

Linux 系统为管理员提供了非常好的方法,使其可以在系统运行时更改内核,而不需要重新引导内核系统,这是通过/proc 虚拟文件系统实现的。/proc 文件虚拟系统是一种内核和内核模块用来向进程(process)发送信息的机制(所以叫做“/proc”),这个伪文件系统允许与内核内部数据结构交互,获取有关进程的有用信息,在运行中(on the fly)改变设置(通过改变内核参数)。与其他文件系统不同,/proc 存在于内存而不是硬盘中。proc 文件系统提供的信息如下:

  • 进程信息:系统中的任何一个进程,在 proc 的子目录中都有一个同名的进程 ID,可以找到 cmdline、mem、root、stat、statm,以及 status。某些信息只有超级用户可见,例如进程根目录。每一个单独含有现有进程信息的进程有一些可用的专门链接,系统中的任何一个进程都有一个单独的自链接指向进程信息,其用处就是从进程中获取命令行信息。
  • 系统信息:如果需要了解整个系统信息中也可以从/proc/stat 中获得,其中包括 CPU 占用情况、磁盘空间、内存对换、中断等。
  • CPU 信息:利用/proc/CPUinfo 文件可以获得中央处理器的当前准确信息。
  • 负载信息:/proc/loadavg 文件包含系统负载信息。
  • 系统内存信息:/proc/meminfo 文件包含系统内存的详细信息,其中显示物理内存的数量、可用交换空间的数量,以及空闲内存的数量等。

表 1 是 /proc 目录中的主要文件的说明:
表 1 /proc 目录中的主要文件的说明

下面本文的几个例子都是使用 Python 脚本读取/proc 目录中的主要文件来实现实现对 Linux 服务器的监控的 。
使用 Python 脚本实现对 Linux 服务器的监控
对于 CPU(中央处理器)监测

脚本 1 名称 CPU1.py,作用获取 CPU 的信息。
清单 1.获取 CPU 的信息

#!/usr/bin/env Python
from __future__ import print_function
from collections import OrderedDict
import pprint

def CPUinfo():
  ''' Return the information in /proc/CPUinfo
  as a dictionary in the following format:
  CPU_info['proc0']={...}
  CPU_info['proc1']={...}
  '''
  CPUinfo=OrderedDict()
  procinfo=OrderedDict()

  nprocs = 0
  with open('/proc/CPUinfo') as f:
    for line in f:
      if not line.strip():
        # end of one processor
        CPUinfo['proc%s' % nprocs] = procinfo
        nprocs=nprocs+1
        # Reset
        procinfo=OrderedDict()
      else:
        if len(line.split(':')) == 2:
          procinfo[line.split(':')[0].strip()] = line.split(':')[1].strip()
        else:
          procinfo[line.split(':')[0].strip()] = ''

  return CPUinfo

if __name__=='__main__':
  CPUinfo = CPUinfo()
  for processor in CPUinfo.keys():
    print(CPUinfo[processor]['model name'])

简单说明一下清单 1,读取/proc/CPUinfo 中的信息,返回 list,每核心一个 dict。其中 list 是一个使用方括号括起来的有序元素集合。List 可以作为以 0 下标开始的数组。Dict 是 Python 的内置数据类型之一, 它定义了键和值之间一对一的关系。OrderedDict 是一个字典子类,可以记住其内容增加的顺序。常规 dict 并不跟踪插入顺序,迭代处理时会根据键在散列表中存储的顺序来生成值。在 OrderedDict 中则相反,它会记住元素插入的顺序,并在创建迭代器时使用这个顺序。

可以使用 Python 命令运行脚本 CPU1.py 结果见图 1
 
# Python CPU1.py
Intel(R) Celeron(R) CPU E3200  @ 2.40GHz
图 1.运行清单 1

也可以使用 chmod 命令添加权限收直接运行 CPU1.py
 
#chmod +x CPU1.py
# ./CPU1.py
对于系统负载监测

脚本 2 名称 CPU2.py,作用获取系统的负载信息
清单 2 获取系统的负载信息

#!/usr/bin/env Python
import os
def load_stat():
  loadavg = {}
  f = open("/proc/loadavg")
  con = f.read().split()
  f.close()
  loadavg['lavg_1']=con[0]
  loadavg['lavg_5']=con[1]
  loadavg['lavg_15']=con[2]
  loadavg['nr']=con[3]
  loadavg['last_pid']=con[4]
  return loadavg
print "loadavg",load_stat()['lavg_15']

简单说明一下清单 2:清单 2 读取/proc/loadavg 中的信息,import os :Python 中 import 用于导入不同的模块,包括系统提供和自定义的模块。其基本形式为:import 模块名 [as 别名],如果只需要导入模块中的部分或全部内容可以用形式:from 模块名 import *来导入相应的模块。OS 模块 os 模块提供了一个统一的操作系统接口函数,os 模块能在不同操作系统平台如 nt,posix 中的特定函数间自动切换,从而实现跨平台操作。

可以使用 Python 命令运行脚本 CPU1.py 结果见图 2 # Python CPU2.py
图 2.运行清单 2

对于内存信息的获取

脚本 3 名称 mem.py,作用是获取内存使用情况信息
清单 3 获取内存使用情况

#!/usr/bin/env Python

from __future__ import print_function
from collections import OrderedDict

def meminfo():
  ''' Return the information in /proc/meminfo
  as a dictionary '''
  meminfo=OrderedDict()

  with open('/proc/meminfo') as f:
    for line in f:
      meminfo[line.split(':')[0]] = line.split(':')[1].strip()
  return meminfo

if __name__=='__main__':
  #print(meminfo())

  meminfo = meminfo()
  print('Total memory: {0}'.format(meminfo['MemTotal']))
  print('Free memory: {0}'.format(meminfo['MemFree']))

简单说明一下清单 3:清单 3 读取 proc/meminfo 中的信息,Python 字符串的 split 方法是用的频率还是比较多的。比如我们需要存储一个很长的数据,并且按照有结构的方法存储,方便以后取数据进行处理。当然可以用 json 的形式。但是也可以把数据存储到一个字段里面,然后有某种标示符来分割。 Python 中的 strip 用于去除字符串的首位字符,最后清单 3 打印出内存总数和空闲数。

可以使用 Python 命令运行脚本 mem.py 结果见图 3。 # Python mem.py
图 3.运行清单 3

对于网络接口的监测

脚本 4 名称是 net.py,作用获取网络接口的使用情况。
清单 4 net.py 获取网络接口的输入和输出

#!/usr/bin/env Python
import time
import sys

if len(sys.argv) > 1:
  INTERFACE = sys.argv[1]
else:
  INTERFACE = 'eth0'
STATS = []
print 'Interface:',INTERFACE

def rx():
  ifstat = open('/proc/net/dev').readlines()
  for interface in ifstat:
    if INTERFACE in interface:
      stat = float(interface.split()[1])
      STATS[0:] = [stat]

def tx():
  ifstat = open('/proc/net/dev').readlines()
  for interface in ifstat:
    if INTERFACE in interface:
      stat = float(interface.split()[9])
      STATS[1:] = [stat]

print  'In     Out'
rx()
tx()

while  True:
  time.sleep(1)
  rxstat_o = list(STATS)
  rx()
  tx()
  RX = float(STATS[0])
  RX_O = rxstat_o[0]
  TX = float(STATS[1])
  TX_O = rxstat_o[1]
  RX_RATE = round((RX - RX_O)/1024/1024,3)
  TX_RATE = round((TX - TX_O)/1024/1024,3)
  print RX_RATE ,'MB   ',TX_RATE ,'MB'

简单说明一下清单 4:清单 4 读取/proc/net/dev 中的信息,Python 中文件操作可以通过 open 函数,这的确很像 C 语言中的 fopen。通过 open 函数获取一个 file object,然后调用 read(),write()等方法对文件进行读写操作。另外 Python 将文本文件的内容读入可以操作的字符串变量非常容易。文件对象提供了三个“读”方法: read()、readline() 和 readlines()。每种方法可以接受一个变量以限制每次读取的数据量,但它们通常不使用变量。 .read() 每次读取整个文件,它通常用于将文件内容放到一个字符串变量中。然而 .read() 生成文件内容最直接的字符串表示,但对于连续的面向行的处理,它却是不必要的,并且如果文件大于可用内存,则不可能实现这种处理。.readline() 和 .readlines() 之间的差异是后者一次读取整个文件,象 .read() 一样。.readlines() 自动将文件内容分析成一个行的列表,该列表可以由 Python 的 for … in … 结构进行处理。另一方面,.readline() 每次只读取一行,通常比 .readlines() 慢得多。仅当没有足够内存可以一次读取整个文件时,才应该使用 .readline()。最后清单 4 打印出网络接口的输入和输出情况。

可以使用 Python 命令运行脚本 net.py 结果见图 4 #Python net.py
图 4.运行清单 4

监控 Apache 服务器进程的 Python 脚本

Apache 服务器进程可能会因为系统各种原因而出现异常退出,导致 Web 服务暂停。所以笔者写一个 Python 脚本文件:
清单 5 crtrl.py 监控 Apache 服务器进程的 Python 脚本

#!/usr/bin/env Python
import os, sys, time

while True:
time.sleep(4)
try:
ret = os.popen('ps -C apache -o pid,cmd').readlines()
if len(ret) < 2:
print "apache 进程异常退出, 4 秒后重新启动"
time.sleep(3)
os.system("service apache2 restart")
except:
print "Error", sys.exc_info()[1]

设置文件权限为执行属性(使用命令 chmod +x crtrl.py),然后加入到/etc/rc.local 即可,一旦 Apache 服务器进程异常退出,该脚本自动检查并且重启。 简单说明一下清单 5 这个脚本不是基于/proc 伪文件系统的,是基于 Python 自己提供的一些模块来实现的 。这里使用的是 Python 的内嵌 time 模板,time 模块提供各种操作时间的函数。
总结

在实际工作中,Linux 系统管理员可以根据自己使用的服务器的具体情况编写一下简单实用的脚本实现对 Linux 服务器的监控。本文介绍一下使用 Python 脚本实现对 Linux 服务器 CPU 、系统负载、内存和 网络使用情况的监控脚本的编写方法。

时间: 2015-03-31

linux下python抓屏实现方法

本文实例讲述了linux下python抓屏实现方法.分享给大家供大家参考.具体实现代码如下: #!/usr/bin/python '''by zevolo, 2012.12.20 ''' import gtk.gdk import gtk import glib class MyRect(): def __init__(self, x = 0, y = 0, w = 0, h = 0): self.x = x self.y = y self.w = w self.h = h def __init

python在linux系统下获取系统内存使用情况的方法

本文实例讲述了python在linux系统下获取系统内存使用情况的方法.分享给大家供大家参考.具体如下: """ Simple module for getting amount of memory used by a specified user's processes on a UNIX system. It uses UNIX ps utility to get the memory usage for a specified username and pipe it

浅谈Python中copy()方法的使用

copy()方法返回字典的浅拷贝. 语法 以下是copy()方法的语法: dict.copy() 参数 NA 返回值 此方法返回字典的浅拷贝. 例子 下面的例子显示了copy()方法的使用. #!/usr/bin/python dict1 = {'Name': 'Zara', 'Age': 7}; dict2 = dict1.copy() print "New Dictinary : %s" % str(dict2) 当我们运行上面的程序,它会产生以下结果: New Dictinary

在Linux下调试Python代码的各种方法

这是一个我用于调试或分析工具概述,不一定是完整全面,如果你知道更好的工具,请在评论处标记. 日志 是的,的确,不得不强调足够的日志记录对应用程序是多么的重要.您应该记录重要的东西,如果你的记录足够好的话,你可以从日志中找出问题从而节省大量的时间. 如果你曾经用print语句来调试代码现在停下吧,用logging.debug替代,开始可以慢慢来,以后完全禁用它... 追踪 有时看到程序如何被执行会很有帮助.你可以使用IDE的调试共轭ngn一步一步的运行程序,但你需要知道你要找的是什么,否则这将会是

Python 拷贝对象(深拷贝deepcopy与浅拷贝copy)

1. copy.copy 浅拷贝 只拷贝父对象,不会拷贝对象的内部的子对象.2. copy.deepcopy 深拷贝 拷贝对象及其子对象一个很好的例子: Code highlighting produced by Actipro CodeHighlighter (freeware) http://www.CodeHighlighter.com/ -->import copya = [1, 2, 3, 4, ['a', 'b']]  #原始对象b = a  #赋值,传对象的引用c = copy.c

python实现linux下使用xcopy的方法

本文实例讲述了python实现linux下使用xcopy的方法.分享给大家供大家参考.具体如下: 这个python函数模仿windows下的xcopy命令编写,可以用在linux下 #!/usr/bin/python # -*- coding: UTF-8 -*- """ xcopy for Linux... Use: ______________________________________________________________________________

Python中使用copy模块实现列表(list)拷贝

引用是指保存的值为对象的地址.在 Python 语言中,一个变量保存的值除了基本类型保存的是值外,其它都是引用,因此对于它们的使用就需要小心一些.下面举个例子: 问题描述:已知一个列表,求生成一个新的列表,列表元素是原列表的复制 复制代码 代码如下: a=[1,2] b=a 这种做法其实并未真正生成一个新的列表,b指向的仍然是a所指向的对象.这样,如果对a或b的元素进行修改,a,b的值同时发生变化. 解决的方法为: 复制代码 代码如下: a=[1,2] b=a[:] 这样修改a对b没有影响.修改

Python中使用select模块实现非阻塞的IO

Socket的英文原义是"孔"或"插座".作为BSD UNIX的进程通信机制,取后一种意思.通常也称作"套接字",用于描述IP地址和端口,是一个通信链的句柄.在Internet上的主机一般运行了多个服务软件,同时提供几种服务.每种服务都打开一个Socket,并绑定到一个端口上,不同的端口对应于不同的服务.Socket正如其英文原意那样,像一个多孔插座.一台主机犹如布满各种插座的房间,每个插座有一个编号,有的插座提供220伏交流电, 有的提供110

深入理解python中的select模块

简介 Python中的select模块专注于I/O多路复用,提供了select  poll  epoll三个方法(其中后两个在Linux中可用,windows仅支持select),另外也提供了kqueue方法(freeBSD系统) select方法 进程指定内核监听哪些文件描述符(最多监听1024个fd)的哪些事件,当没有文件描述符事件发生时,进程被阻塞:当一个或者多个文件描述符事件发生时,进程被唤醒. 当我们调用select()时: 1.上下文切换转换为内核态 2.将fd从用户空间复制到内核空

python标准库OS模块函数列表与实例全解

Python OS模块库详解 os就是"operating system"的缩写,顾名思义,os模块提供的就是各种 Python 程序与操作系统进行交互的接口.通过使用os模块,一方面可以方便地与操作系统进行交互,另一方面页可以极大增强代码的可移植性.如果该模块中相关功能出错,会抛出OSError异常或其子类异常. 注意 如果是读写文件的话,建议使用内置函数open(): 如果是路径相关的操作,建议使用os的子模块os.path: 如果要逐行读取多个文件,建议使用fileinput模块

Python中如何添加自定义模块

一般来说,我们会将自己写的Python模块与python自带的模块分开存放以达到便于维护的目的.那么如何在Python中添加自定义的模块呢? 在解答这个问题之前,我们首先要明确两点: 1.严格区分包(package)和文件夹.包的定义就是包含__init__.py的文件夹.如果没有__init__.py,那么就是普通的文件夹. 2.模块导入写法,注意只要包路径,不要文件夹路径. Python 运行环境在查找库文件时是对 sys.path 列表进行遍历,如果我们想在运行环境中注册新的类库,主要有以

Python中内建模块collections如何使用

collections是Python内建的一个集合模块,提供了许多有用的集合类. 这里举几个例子: namedtuple 我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成: >>> p = (1, 2) 但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的. 定义一个class又小题大做了,这时,namedtuple就派上了用场: >>> from collections import namedtuple >>>

图解Python中深浅copy(通俗易懂)

一.深浅copy 赋值运算 l1 = [1, 2, 3, [22, 33]] l2 = l1 l1.append(666) print(l1) # [1, 2, 3, [22, 33], 666] print(l2) # [1, 2, 3, [22, 33], 666] 图解: 注意:l2 = l1是一个指向,是赋值,和深浅copy无关. 浅copy 其实列表是一个一个的槽位,每个槽位存储的是该对象的内存地址 例1. 给大列表添加元素 l1 = [1, 2, 3, [22, 33]] l2 =

使用Python中的tkinter模块作图的方法

python简述: Python是一种解释型.面向对象.动态数据类型的高级程序设计语言.自从20世纪90年代初Python语言诞生至今,它逐渐被广泛应用于处理系统管理任务和Web编程.Python[1]已经成为最受欢迎的程序设计语言之一.2011年1月,它被TIOBE编程语言排行榜评为2010年度语言.自从2004年以后,python的使用率是呈线性增长. tkinter模块介绍 tkinter模块("Tk 接口")是Python的标准Tk GUI工具包的接口.Tk和Tkinter可以

python中利用h5py模块读取h5文件中的主键方法

如下所示: import h5py import numpy as np #HDF5的写入: imgData = np.zeros((2,4)) f = h5py.File('HDF5_FILE.h5','w') #创建一个h5文件,文件指针是f f['data'] = imgData #将数据写入文件的主键data下面 f['labels'] = np.array([1,2,3,4,5]) #将数据写入文件的主键labels下面 f.close() #关闭文件 #HDF5的读取: f = h5

详解python中的hashlib模块的使用

hashlib hashlib主要提供字符加密功能,将md5和sha模块整合到了一起,支持md5,sha1, sha224, sha256, sha384, sha512等算法 hashlib模块 #哈希算法也叫摘要算法,相同的数据始终得到相同的输出,不同的数据得到不同的输出. #(1)哈希将不可变的任意长度的数据,变成具有固定长度的唯一值 #(2)字典的键值对映射关系是通过哈希计算的,哈希存储的数据是散列(无序) # 应用场景:在需要效验功能时使用  用户密码的 => 加密,解密  相关效验的