教你用Python matplotlib库制作简单的动画

matplotlib制作简单的动画

动画即是在一段时间内快速连续的重新绘制图像的过程.

matplotlib提供了方法用于处理简单动画的绘制:

import matplotlib.animation as ma
def update(number):
    pass

# 每隔30毫秒,执行一次update
ma.FuncAnimation(
    mp.gcf(),   # 作用域当前窗体
    update,     # 更新函数的函数名
    interval=30 # 每隔30毫秒,执行一次update
)

案例1:

随机生成各种颜色的100个气泡, 让他们不断增大.

1.随机生成100个气泡.

2.每个气泡拥有四个属性: position, size, growth, color

3.把每个气泡绘制到窗口中.

4.开启动画,在update函数中更新每个气泡的属性并重新绘制

"""
简单动画
1. 随机生成100个气泡.
2. 每个气泡拥有四个属性: position, size, growth, color
3. 把每个气泡绘制到窗口中.
4. 开启动画,在update函数中更新每个气泡的属性并重新绘制
"""
import numpy as np
import matplotlib.pyplot as mp
import matplotlib.animation as ma

n = 100
balls = np.zeros(n, dtype=[
		('position', float, 2), # 位置属性
		('size', float, 1),     # 大小属性
		('growth', float, 1),   # 生长速度
		('color', float, 4)])   # 颜色属性
# 初始化每个泡泡
# uniform: 从0到1取随机数,填充n行2列的数组
balls['position']=np.random.uniform(0,1,(n,2))
balls['size']=np.random.uniform(50,70,n)
balls['growth']=np.random.uniform(10,20,n)
balls['color']=np.random.uniform(0,1,(n,4))
# 绘制100个泡泡
mp.figure('Bubble', facecolor='lightgray')
mp.title('Bubble', fontsize=18)
mp.xticks([])
mp.yticks([])
sc = mp.scatter(balls['position'][:,0],
	       balls['position'][:,1],
	       balls['size'],
	       color=balls['color'])

# 启动动画
def update(number):
	balls['size'] += balls['growth']
	# 让某个泡泡破裂,从头开始执行
	boom_i = number % n
	balls[boom_i]['size'] = 60
	balls[boom_i]['position']= \
			np.random.uniform(0, 1, (1, 2))
	# 重新设置属性
	sc.set_sizes(balls['size'])
	sc.set_offsets(balls['position'])

anim = ma.FuncAnimation(
	mp.gcf(), update, interval=30)

mp.show()

案例2

"""
模拟心电图
"""
import numpy as np
import matplotlib.pyplot as mp
import matplotlib.animation as ma

mp.figure('Signal', facecolor='lightgray')
mp.title('Signal', fontsize=16)
mp.xlim(0, 10)
mp.ylim(-3, 3)
mp.grid(linestyle=':')
pl = mp.plot([],[], color='dodgerblue',
		label='Signal')[0]
# 启动动画
def update(data):
	t, v = data
	x, y = pl.get_data()  #x y: ndarray数组
	x = np.append(x, t)
	y = np.append(y, v)
	# 重新绘制图像
	pl.set_data(x, y)
	# 移动坐标轴
	if x[-1]>5:
		mp.xlim(x[-1]-5, x[-1]+5)

x = 0
def generator():
	global x
	y = np.sin(2 * np.pi * x) * \
		np.exp(np.sin(0.2 * np.pi * x))
	yield (x, y)
	x += 0.05

anim = ma.FuncAnimation(mp.gcf(),
	update, generator, interval=30)
mp.show()

到此这篇关于教你用Python matplotlib制作简单的动画的文章就介绍到这了,更多相关matplotlib制作动画内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-06-09

Python通过matplotlib绘制动画简单实例

Matplotlib是一个Python的2D绘图库,它以各种硬拷贝格式和跨平台的交互式环境生成出版质量级别的图形. 通过Matplotlib,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率谱,条形图,错误图,散点图等. matplotlib从1.1.0版本以后就开始支持绘制动画,具体使用可以参考官方帮助文档.下面是一个很基本的例子: """ A simple example of an animated plot """ import n

Python使用matplotlib绘制动画的方法

本文实例讲述了Python使用matplotlib绘制动画的方法.分享给大家供大家参考.具体分析如下: matplotlib从1.1.0版本以后就开始支持绘制动画 下面是几个的示例: 第一个例子使用generator,每隔两秒,就运行函数data_gen: # -*- coding: utf-8 -*- import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation fig =

Python使用Matplotlib实现雨点图动画效果的方法

本文实例讲述了Python使用Matplotlib实现雨点图动画效果的方法.分享给大家供大家参考,具体如下: 关键点 win10安装ffmpeg animation函数使用 update函数 win10安装ffmpeg 因为最后要将动画图保存为.mp4格式,要用到ffmpeg,去官网下载,我az下载的是windows64bit static版本的,下载后解压到软件安装常用路径,并将ffmpeg路径添加到环境变量(这个方法在最后没用,但还是添加一下) animationa函数 准确来说是anima

如何基于Python Matplotlib实现网格动画

-1- 如果你对本文的代码感兴趣,可以去 Github (文末提供)里查看.第一次运行的时候会报一个错误(还没找到解决办法),不过只要再运行一次就正常了. 这篇文章虽然不是篇典型的数据科学类文章,不过它涉及到数据科学以及商业智能的应用.Python 的 Matplotlib 是最常用的图表绘制以及数据可视化库.我们对折线图.柱状图以及热力图都比较熟悉,但你知道用 Matplotlib 还能做简单的动画吗? 下面就是用 Matplotlib 制作动画的例子.展示的是 John Conway 的 <

基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib.pyplot中的每一个函数都会对画布图像作出相应的改变,如创建画布.在画布中创建一个绘图区.在绘图区上画几条线.给图像添加文字说明等.下面我们就通过实例代码来领略一下他的魅力. import matplotlib.pyplot as plt plt.plot([1,2,3,4]) plt.ylabel('some numbers') plt.show() 上图是我们通

基于Linux系统中python matplotlib画图的中文显示问题的解决方法

最近想学习一些python数据分析的内容,就弄了个爬虫爬取了一些数据,并打算用Anaconda一套的工具(pandas, numpy, scipy, matplotlib, jupyter)等进行一些初步的数据挖掘和分析. 在使用matplotlib画图时,横坐标为中文,但是画出的条形图横坐标总是显示"框框",就去查资料解决.感觉这应该是个比较常见的问题,网上的中文资料也确实很多,但是没有任何一个彻底解决了我遇到的问题.零零碎碎用了快3个小时的时间,才终于搞定.特此分享,希望能帮到有同

Python matplotlib绘图可视化知识点整理(小结)

无论你工作在什么项目上,IPython都是值得推荐的.利用ipython --pylab,可以进入PyLab模式,已经导入了matplotlib库与相关软件包(例如Numpy和Scipy),额可以直接使用相关库的功能. 本文作为学习过程中对matplotlib一些常用知识点的整理,方便查找. 这样IPython配置为使用你所指定的matplotlib GUI后端(TK/wxPython/PyQt/Mac OS X native/GTK).对于大部分用户而言,默认的后端就已经够用了.Pylab模式

Python matplotlib 绘制双Y轴曲线图的示例代码

Matplotlib简介 Matplotlib是非常强大的python画图工具 Matplotlib可以画图线图.散点图.等高线图.条形图.柱形图.3D图形.图形动画等. Matplotlib安装 pip3 install matplotlib#python3 双X轴的 可以理解为共享y轴 ax1=ax.twiny() ax1=plt.twiny() 双Y轴的 可以理解为共享x轴 ax1=ax.twinx() ax1=plt.twinx() 自动生成一个例子 x = np.arange(0.,

Python Matplotlib简易教程(小白教程)

简单演示 import matplotlib.pyplot as plt import numpy as np # 从[-1,1]中等距去50个数作为x的取值 x = np.linspace(-1, 1, 50) print(x) y = 2*x + 1 # 第一个是横坐标的值,第二个是纵坐标的值 plt.plot(x, y) # 必要方法,用于将设置好的figure对象显示出来 plt.show() import matplotlib.pyplot as plt import numpy as

基于Python对象引用、可变性和垃圾回收详解

变量不是盒子 在示例所示的交互式控制台中,无法使用"变量是盒子"做解释.图说明了在 Python 中为什么不能使用盒子比喻,而便利贴则指出了变量的正确工作方式. 变量 a 和 b 引用同一个列表,而不是那个列表的副本 >>> a = [1, 2, 3] >>> b = a >>> a.append(4) >>> b [1, 2, 3, 4] 如果把变量想象为盒子,那么无法解释 Python 中的赋值:应该把变量视作

python matplotlib画图实例代码分享

python的matplotlib包支持我们画图,有点非常多,现学习如下. 首先要导入包,在以后的示例中默认已经导入这两个包 import matplotlib.pyplot as plt import numpy as np 然后画一个最基本的图 t = np.arange(0.0, 2.0, 0.01)#x轴上的点,0到2之间以0.01为间隔 s = np.sin(2*np.pi*t)#y轴为正弦 plt.plot(t, s)#画图 plt.xlabel('time (s)')#x轴标签 p

python matplotlib 注释文本箭头简单代码示例

注释文本箭头 结果展示: 完整代码示例: import numpy as np import matplotlib.pyplot as plt fig, ax = plt.subplots(figsize=(5, 5)) ax.set_aspect(1) x1 = -1 + np.random.randn(100) y1 = -1 + np.random.randn(100) x2 = 1. + np.random.randn(100) y2 = 1. + np.random.randn(100

python+matplotlib绘制3D条形图实例代码

本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下. 首先看看演示效果: 完整代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121