python词云库wordcloud的使用方法与实例详解

wordcloud是优秀的词云展示第三方库

一、基本使用

import jieba
import wordcloud
txt = open("1.txt", "r", encoding='utf-8').read()

words = jieba.lcut(txt)
txt_1 = " ".join(words)
# print(txt1)
w = wordcloud.WordCloud(font_path="msyh.ttc",
      width=1000, height=700, background_color="white",
      )
w.generate(txt_1)
w.to_file("ciyun.png")

二、按图片形状生成

import jieba
from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator
import numpy as np
from PIL import Image

txt = open("C:/Users/96356/Desktop/1.txt", "r", encoding='utf-8').read()

words = jieba.lcut(txt)
txt_1 = " ".join(words)
photo = np.array(Image.open('C:/Users/96356/Desktop/2.png'))
# from scipy.misc import imread
# china=imread('C:/Users/96356/Desktop/2.png') #scipy.misc方式都可以读取图片

w = WordCloud(font_path="msyh.ttc",
    mask=photo,
    background_color="white",
    )
w.generate(txt_1)
w.to_file("ciyun.png")

三、WordCloud参数详解

from wordcloud import WordCloud

参数 作用
font_path 字体路径,需要展现什么字体就把该字体路径+后缀名写上,如:font_path = ‘黑体.ttf'
width 输出的画布宽度,默认为400像素
height 输出的画布高度,默认为200像素
prefer_horizontal 词语水平方向排版出现的频率,默认 0.9 (所以词语垂直方向排版出现频率为 0.1 )
mask 如果参数为空,则使用二维遮罩绘制词云。如果 mask 非空,设置的宽高值将被忽略,遮罩形状被 mask 取代。除全白(#FFFFFF)的部分将不会绘制,其余部分会用于绘制词云。如:bg_pic = imread(‘读取一张图片.png'),背景图片的画布一定要设置为白色(#FFFFFF),然后显示的形状为不是白色的其他颜色。可以用ps工具将自己要显示的形状复制到一个纯白色的画布上再保存,就ok了。一般为mask=np.array(Image.open(‘xxx.jpg'))。其中from PIL import Image
scale 按照比例进行放大画布,如设置为1.5,则长和宽都是原来画布的1.5倍
min_font_size 显示的最小的字体大小
font_step 字体步长,如果步长大于1,会加快运算但是可能导致结果出现较大的误差
max_words 要显示的词的最大个数
stopwords 设置需要屏蔽的词,如果为空,则使用内置的STOPWORDS
background_color 背景颜色,如background_color=‘white',背景颜色为白色
max_font_size 显示的最大的字体大小
mode 当参数为“RGBA”并且background_color不为空时,背景为透明
relative_scaling 词频和字体大小的关联性
color_func 生成新颜色的函数,如果为空,则使用 self.color_func
regexp 使用正则表达式分隔输入的文本
collocations 是否包括两个词的搭配
colormap 给每个单词随机分配颜色,若指定color_func,则忽略该方法
random_state 为每个单词返回一个PIL颜色

其他部分函数

函数 作用
fit_words(frequencies) 根据词频生成词云
generate(text) 根据文本生成词云
generate_from_frequencies(frequencies[, …]) 根据词频生成词云
generate_from_text(text) 根据文本生成词云
process_text(text) 将长文本分词并去除屏蔽词(此处指英语,中文分词还是需要自己用别的库先行实现,使用上面的 fit_words(frequencies) )
recolor([random_state, color_func, colormap]) 对现有输出重新着色。重新上色会比重新生成整个词云快很多
to_array() 转化为 numpy array
to_file(filename) 输出到文件

更多关于python词云库wordcloud的使用方法请查看下面的相关文章

时间: 2020-02-16

用Python和WordCloud绘制词云的实现方法(内附让字体清晰的秘笈)

环境及模块: Win7 64位 Python 3.6.4 WordCloud 1.5.0 Pillow 5.0.0 Jieba 0.39 目标: 绘制安徽省2018年某些科技项目的词云,直观展示热点. 思路: 先提取项目的名称,再用Jieba分词后提取词汇:过滤掉"研发"."系列"等无意义的词:最后用WordCloud 绘制词云. 扩展: 词云默认是矩形的,本代码采用图片作为蒙版,产生异形词云图.这里用的图片是安徽省地图. 秘笈: 用网上的常规方法绘制的词云,字体有

python词云库wordcloud的使用方法与实例详解

wordcloud是优秀的词云展示第三方库 一.基本使用 import jieba import wordcloud txt = open("1.txt", "r", encoding='utf-8').read() words = jieba.lcut(txt) txt_1 = " ".join(words) # print(txt1) w = wordcloud.WordCloud(font_path="msyh.ttc"

python词云库wordCloud使用方法详解(解决中文乱码)

文章中的例子主要借鉴wordColud的examples,在文章对examples中的例子做了一些改动. 一.wordColud设计中文词云乱码 使用wordColud设计词云的时候可能会产生乱码问题,因为wordColud默认的字体不支持中文,所以我们只需要替换wordColud的默认字体即可正常显示中文. 1.中文词云乱码 我们使用simhei(黑体)来替换wordColud的默认字体. 2.替换默认字体 a.在字体文件*.tff字体文件(simhei.tff)拷贝到wordColud安装的

详解Python数据可视化编程 - 词云生成并保存(jieba+WordCloud)

思维导图: 效果(语句版): 源码: # -*- coding: utf-8 -*- """ Created on Tue Mar 5 17:59:29 2019 @author: dell """ # ============================================================================= # 步骤: # 分割aaa = jieba.cut(str,cut_all=True/Fa

用python结合jieba和wordcloud实现词云效果

0x00 前言 突然想做一个漏洞词云,看看哪些漏洞比较高频,如果某些厂商有漏洞公开(比如ly),也好针对性挖掘.就选x云吧(镜像站 http://wy.hxsec.com/bugs.php ).用jieba和wordcloud两个强大的第三方库,就可以轻松打造出x云漏洞词云. github地址: https://github.com/theLSA/wooyun_wordcloud 本站下载地址:wooyun_wordcloud 0x01 爬取标题 直接上代码: #coding:utf-8 #Au

Python基于WordCloud制作词云图

这篇文章主要介绍了python基于WordCloud制作词云图,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1. 导入需要的包package import matplotlib.pyplot as plt from scipy.misc import imread from wordcloud import WordCloud,STOPWORDS import xlrd 2. 设置生成词云图的背景图片,最好是分辨率高且色彩边界分明的图片 de

Python制作词云图代码实例

词云图是将词汇按照频率的高低显示不同大小而形成的图,可以一目了然地看出关键词.下面是词云图的python代码- #导入需要模块 import jieba import numpy as np import matplotlib.pyplot as plt from PIL import Image from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator text_road=str(input('请输入文章的路径:')) pi

Python基于jieba库进行简单分词及词云功能实现方法

本文实例讲述了Python基于jieba库进行简单分词及词云功能实现方法.分享给大家供大家参考,具体如下: 目标: 1.导入一个文本文件 2.使用jieba对文本进行分词 3.使用wordcloud包绘制词云 环境: Python 3.6.0 |Anaconda 4.3.1 (64-bit) 工具: jupyter notebook 从网上下载了一篇小说<老九门>,以下对这篇小说进行分词,并绘制词云图. 分词使用最流行的分词包jieba,参考:https://github.com/fxsjy/

python根据文本生成词云图代码实例

这篇文章主要介绍了python根据文本生成词云图代码实例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 效果 代码 from wordcloud import WordCloud import codecs import jieba #import jieba.analyse as analyse from scipy.misc import imread import os from os import path import matplot

Python基于time模块求程序运行时间的方法

本文实例讲述了Python基于time模块求程序运行时间的方法.分享给大家供大家参考,具体如下: 要记录程序的运行时间可以利用Unix系统中,1970.1.1到现在的时间的毫秒数,这个时间戳轻松完成. 方法是程序开始的时候取一次存入一个变量,在程序结束之后取一次再存入一个变量,与程序开始的时间戳相减则可以求出. Python中取这个时间戳的方法为引入time类之后,使用time.time();就能够拿出来.也就是Java中的System.currentTimeMillis(). 由于Python

Python基于回溯法子集树模板实现8皇后问题

本文实例讲述了Python基于回溯法子集树模板实现8皇后问题.分享给大家供大家参考,具体如下: 问题 8×8格的国际象棋上摆放八个皇后,使其不能互相攻击,即任意两个皇后都不能处于同一行.同一列或同一斜线上,问有多少种摆法. 分析 为了简化问题,考虑到8个皇后不同行,则每一行放置一个皇后,每一行的皇后可以放置于第0.1.2.....7列,我们认为每一行的皇后有8种状态.那么,我们只要套用子集树模板,从第0行开始,自上而下,对每一行的皇后,遍历它的8个状态即可. 代码: ''' 8皇后问题 '''

Python基于list的append和pop方法实现堆栈与队列功能示例

本文实例讲述了Python基于list的append和pop方法实现堆栈与队列功能.分享给大家供大家参考,具体如下: #coding=utf8 ''''' 堆栈: 堆栈是一个后进先出(LIFO)的数据结构. 在栈上"push"元素是个常用术语,意思是把一个对象添加到堆栈中. 删除一个元素,可以把它"pop"出堆栈. 队列: 队列是一种先进先出(FIFO)的数据类型. 新的元素通过"入队"的方式添加进队列的末尾, "出对"就是从

Python基于Tkinter的HelloWorld入门实例

本文实例讲述了Python基于Tkinter的HelloWorld入门实例.分享给大家供大家参考.具体分析如下: 初学Python,打算做几个Tkinter的应用来提高. 刚学的HelloWorld,秀一下.我用Python3.2的,Windows版本的. 源代码如下: #导入sys和tkinter模块 import sys, tkinter #创建主窗口 root = tkinter.Tk() root.title("HelloWorld") root.minsize(200, 10

Python基于回溯法子集树模板解决0-1背包问题实例

本文实例讲述了Python基于回溯法子集树模板解决0-1背包问题.分享给大家供大家参考,具体如下: 问题 给定N个物品和一个背包.物品i的重量是Wi,其价值位Vi ,背包的容量为C.问应该如何选择装入背包的物品,使得放入背包的物品的总价值为最大? 分析 显然,放入背包的物品,是N个物品的所有子集的其中之一.N个物品中每一个物品,都有选择.不选择两种状态.因此,只需要对每一个物品的这两种状态进行遍历. 解是一个长度固定的N元0,1数组. 套用回溯法子集树模板,做起来不要太爽!!! 代码 '''0-

Python基于checksum计算文件是否相同的方法

本文实例讲述了Python基于checksum计算文件是否相同的方法.分享给大家供大家参考.具体如下: 假设有2个二进制文件(0.bin, 1.bin),用checksum检验内容是否相同 # coding: utf8 # Python2.6.2 import md5 with open('0.bin', 'rb') as f: s = md5.new(f.read()).hexdigest() with open('1.bin', 'rb') as f: ss = md5.new(f.read