Python Pandas读取Excel日期数据的异常处理方法

目录
  • 异常描述
  • 出现原因
  • 解决方案:修改自定义格式
  • pandas直接解析Excel数值为日期
  • 总结

异常描述

有时我们的Excel有一个调整过自定义格式的日期字段:

当我们用pandas读取时却是这样的效果:

不管如何指定参数都无效。

出现原因

没有使用系统内置的日期单元格格式,自定义格式没有对负数格式进行定义,pandas读取时无法识别出是日期格式,而是读取出单元格实际存储的数值。

解决方案:修改自定义格式

可以修改为系统内置的自定义格式:

或者在自定义格式上补充负数的定义:

增加;@即可

pandas直接解析Excel数值为日期

有时这种Excel很多,我们需要通过pandas批量读取,挨个人工修改Excel的自定义格式费时费力,下面我演示如何使用pandas直接解析这些数值成为日期格式。

excel中常规格式和日期格式的转换规则如下:

1900/1/1为起始日期,转换的数字是1,往后的每一天增加1

1900/1/2转换为数字是 2

1900/1/3转换为数字是 3

1900/1/4转换为数字是 4

以此类推

excel中时间转换规则如下:

在时间中的规则是把1天转换为数字是 1

每1小时就是 1/24

每1分钟就是 1/(24×60)=1/1440

每1秒钟就是 1/(24×60×60)=1/86400

根据Excel的日期存储规则,我们只需要以1900/1/1为基准日期,根据数值n偏移n-1天即可得到实际日期。不过还有个问题,Excel多存储了1900年2月29日这一天,而正常的日历是没有这一天的,而我们的日期又都是大于1900年的,所以应该偏移n-2天,干脆使用1899年12月30日作为基准,这样不需要作减法操作。

解析代码如下:

import pandas as pd
from pandas.tseries.offsets import Day

df = pd.read_excel("日期.xlsx")
basetime = pd.to_datetime("1899/12/30")
df.日期 = df.日期.apply(lambda x: basetime+Day(x))
df.日期 = df.日期.apply(lambda x: f"{x.month}月{x.day}日")
df.head()
  日期
0 6月8日
1 6月9日
2 6月10日
3 6月11日
4 6月12日

如果需要调用time的strftime方法,由于包含中文则需要设置locale:

import pandas as pd
from pandas.tseries.offsets import Day
import locale
locale.setlocale(locale.LC_CTYPE, 'chinese')

df = pd.read_excel("日期.xlsx")
basetime = pd.to_datetime("1899/12/30")
df.日期 = df.日期.apply(lambda x: basetime+Day(x))
df.日期 = df.日期.dt.strftime('%Y年%m月%d日')
df.head()
  日期
0 2021年06月08日
1 2021年06月09日
2 2021年06月10日
3 2021年06月11日
4 2021年06月12日

总结

到此这篇关于Python Pandas读取Excel日期数据的异常处理的文章就介绍到这了,更多相关Pandas读取Excel日期数据内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2022-02-27

Python pandas如何向excel添加数据

pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

Pandas读取并修改excel的示例代码

一.前言 最近总是和excel打交道,由于数据量较大,人工来修改某些数据可能会有点浪费时间,这时候就使用到了Python数据处理的神器-–Pandas库,话不多说,直接上Pandas. 二.安装 这次使用的python版本是python2.7,安装python可以去python的官网进行下载,这里不多说了. 安装完成后使用Python自带的包管理工具pip可以很快的安装pandas. pip install pandas 如果使用的是Anaconda安装的Python,会自带pandas. 三.

Python使用Pandas读写Excel实例解析

这篇文章主要介绍了Python使用Pandas读写Excel实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 Pandas是python的一个数据分析包,纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具. Pandas提供了大量能使我们快速便捷地处理数据的函数和方法. Pandas官方文档:https://pandas.pydata.org/pandas-docs/stable/ Pandas中文文档:https:/

Python3使用pandas模块读写excel操作示例

本文实例讲述了Python3使用pandas模块读写excel操作.分享给大家供大家参考,具体如下: 前言 Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具,能使我们快速便捷地处理数据.本文介绍如何用pandas读写excel. 1. 读取excel 读取excel主要通过read_excel函数实现,除了pandas

python pandas写入excel文件的方法示例

pandas读取.写入csv数据非常方便,但是有时希望通过excel画个简单的图表看一下数据质量.变化趋势并保存,这时候csv格式的数据就略显不便,因此尝试直接将数据写入excel文件. pandas可以写入一个或者工作簿,两种方法介绍如下: 1.如果是将整个DafaFrame写入excel,则调用to_excel()方法即可实现,示例代码如下: # output为要保存的Dataframe output.to_excel('保存路径 + 文件名.xlsx') 2.有多个数据需要写入多个exce

Python pandas对excel的操作实现示例

最近经常看到各平台里都有Python的广告,都是对excel的操作,这里明哥收集整理了一下pandas对excel的操作方法和使用过程.本篇介绍 pandas 的 DataFrame 对列 (Column) 的处理方法.示例数据请通过明哥的gitee进行下载. 增加计算列 pandas 的 DataFrame,每一行或每一列都是一个序列 (Series).比如: import pandas as pd df1 = pd.read_excel('./excel-comp-data.xlsx');

python pandas实现excel转为html格式的方法

如下所示: #!/usr/bin/env Python # coding=utf-8 import pandas as pd import codecs xd = pd.ExcelFile('/Users/wangxingfan/Desktop/1.xlsx') df = xd.parse() with codecs.open('/Users/wangxingfan/Desktop/1.html','w','utf-8') as html_file: html_file.write(df.to_

Python Learning 列表的更多操作及示例代码

遍历列表-for循环 列表中存储的元素可能非常多,如果想一个一个的访问列表中的元素,可能是一件十分头疼的事.那有没有什么好的办法呢?当然有!使用 for循环 假如有一个食物名单列表,通过 for循环 将列表中的食物名称都打印出来 # 定义一个食物名单列表 foods = ['potato', 'tomato', 'noodles', 'apple', 'pizza'] # 循环访问foods列表 for food in foods: print(food) 输出: potato  tomato 

解决python pandas读取excel中多个不同sheet表格存在的问题

摘要:不同方法读取excel中的多个不同sheet表格性能比较 # 方法1 def read_excel(path): df=pd.read_excel(path,None) print(df.keys()) # for k,v in df.items(): # print(k) # print(v) # print(type(v)) return df # 方法2 def read_excel1(path): data_xls = pd.ExcelFile(path) print(data_x

Python pandas自定义函数的使用方法示例

本文实例讲述了Python pandas自定义函数的使用方法.分享给大家供大家参考,具体如下: 自定义函数的使用 import numpy as np import pandas as pd # todo 将自定义的函数作用到dataframe的行和列 或者Serise的行上 ser1 = pd.Series(np.random.randint(-10,10,5),index=list('abcde')) df1 = pd.DataFrame(np.random.randint(-10,10,(

python2 对excel表格操作完整示例

本文实例讲述了python2 对excel表格操作.分享给大家供大家参考,具体如下: #!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Sat Dec 2 15:40:35 2017 @author: 260207 """ from xlutils.copy import copy import xlrd import xlwt def set_style(name = '

Python pandas实现excel工作表合并功能详解

import os,pandas as pd,re #1.获取文件夹下要合并的文件名 dirpath = '文件夹地址' #工作表3特殊处理 需要开始下标和结束下标 begin = 231 end = 238 excel_names = os.listdir(dirpath) #2.获取文件内容 sheet_1_merge = [] sheet_2_merge = [] sheet_3_merge = pd.DataFrame([0,0,0,0,0,0,0]) for excel_name in

Python实现爬虫抓取与读写、追加到excel文件操作示例

本文实例讲述了Python实现爬虫抓取与读写.追加到excel文件操作.分享给大家供大家参考,具体如下: 爬取糗事百科热门 安装 读写excel 依赖 pip install xlwt 安装 追加excel文件内容 依赖 pip install xlutils 安装 lxml Python示例: import csv import requests from lxml import etree import time import xlwt import os from xlutils.copy

Python操作Excel工作簿的示例代码(\*.xlsx)

前言 Excel 作为流行的个人计算机数据处理软件,混迹于各个领域,在程序员这里也是常常被处理的对象,可以处理 Excel 格式文件的 Python 库还是挺多的,比如 xlrd.xlwt.xlutils.openpyxl.xlwings 等等,但是每个库处理 Excel 的方式不同,有些库在处理时还会有一些局限性. 接下来对比一下几个库的不同,然后主要记录一下 xlwings 这个库的使用,目前这是个人感觉使用起来比较方便的一个库了,其他的几个库在使用过程中总是有这样或那样的问题,不过在特定情