Python数据分析之 Matplotlib 3D图详情

最初我们介绍到 Matplotlib 可以绘制2D图形,并且介绍了一些常见图形的绘制方法,其实不仅可以绘制2D图形,现在较新版本的 Matplotlib 加入了3D绘图的工具包,已经可以轻松地绘制3D图形了,接下来就来介绍一下。

Matplotlib 提供了mpl_toolkits.mplot3d工具包来进行3D图表的绘制,我们导入下简单使用如下:

from mpl_toolkits import mplot3d

通过以上代码导入后,可以传递参数projection='3d'给指定图表对象并将其类型设置为3D类型,如下:

import matplotlib.pyplot as plt
from mpl_toolkits import mplot3d
fig = plt.figure()
# 创建子图对象,类型为3d
ax = fig.add_subplot(projection='3d')
ax.set_xlabel('X', color='r')
ax.set_ylabel('Y', corlor='g')
ax.set_zlabel('Z', corlor='b')

上面示例代码我们创建了子图对象,并把其类型设置为3D类型,并设置了坐标轴的标签及标签颜色,

结果输出如下:

可以看出,生成了一个三维的坐标轴,下面我们在这个三维的坐标轴中添加图表:

import numpy as np

z = np.linspace(0, 45, 100)
x = z * np.sin(z)
y = z * np.cos(z)
ax.plot3D(x, y, z, '#800080')
plt.show()

结果输出如下:

其中plot3D()方法可以绘制3D的折线图,除此之外,还有scatter3D()绘制3D的散点图、bar3D()绘制3D的柱状图等,这些方法和绘制对应的2D图形方法的使用方式基本一致。

到此这篇关于Python数据分析 Matplotlib 3D图的文章就介绍到这了,更多相关Python 3D图内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2022-05-12

Python数据分析之分析千万级淘宝数据

目录 1.项目背景与分析说明 2.导入相关库 4.模型构建 1)流量指标的处理 2)用户行为指标 3)漏斗分析 4)客户价值分析(RFM分析) 1.项目背景与分析说明 1)项目背景 网购已经成为人们生活不可或缺的一部分,本次项目基于淘宝app平台数据,通过相关指标对用户行为进行分析,从而探索用户相关行为模式. 2)数据和字段说明 本文使用的数据集包含了2014.11.18到2014.12.18之间,淘宝App移动端一个月内的用户行为数据.该数据有12256906天记录,共6列数据. user_i

python实现Mysql数据库批量新增数据的场景分析

一.批量插入数据的场景 在进行数据压力时需要进行大数据量的测试 比如登录要进行千人用户同时登录 比如数据加工由于源数据没有,需要我们进行数据库数据的插入 选择方法 使用Jmeter进行接口数据的批量新增 使用存储过程进行数据库的直接操作 使用Python进行数据库的操作 二.插入数据的工具选择 ​选择方法要根据实际情况进行选择,不是哪一种更好,而是哪一种更能快捷的解决我们的问题,举个栗子来讲: 在我们需要Jmeter操作需要实际批量新增用户,用户需要上传图像,这时候我们应该怎么选择呢? 如果选择

Python利用matplotlib模块数据可视化绘制3D图

目录 前言 1 matplotlib绘制3D图形 2 绘制3D画面图 2.1 源码 2.2 效果图 3 绘制散点图 3.1 源码 3.2 效果图 4 绘制多边形 4.1 源码 4.2 效果图 5 三个方向有等高线的3D图 5.1 源码 5.2 效果图 6 三维柱状图 6.1 源码 6.2 效果图 7 补充图 7.1 源码 7.2 效果图 总结 前言 matplotlib实际上是一套面向对象的绘图库,它所绘制的图表中的每个绘图元素,例如线条Line2D.文字Text.刻度等在内存中都有一个对象与之

python中Matplotlib实现绘制3D图的示例代码

Matplotlib 也可以绘制 3D 图像,与二维图像不同的是,绘制三维图像主要通过 mplot3d 模块实现.但是,使用 Matplotlib 绘制三维图像实际上是在二维画布上展示,所以一般绘制三维图像时,同样需要载入 pyplot 模块. mplot3d 模块下主要包含 4 个大类,分别是: mpl_toolkits.mplot3d.axes3d() mpl_toolkits.mplot3d.axis3d() mpl_toolkits.mplot3d.art3d() mpl_toolkit

Python+Plotly绘制精美的数据分析图

目录 1.准备 2.使用 3.保存 4.其他功能 Plotly 是目前已知的Python最强绘图库,它比上次我们讲的Echarts还强大许多许多,它的绘制通过生成一个web页面完成,并且支持调整图像大小,动态调节参数,方便许多python 网页应用的开发. 1.准备 开始之前,你要确保Python和pip已经成功安装在电脑上,如果没有,可以访问这篇文章:超详细Python安装指南 进行安装. Windows环境下打开Cmd(开始—运行—CMD),苹果系统环境下请打开Terminal(comman

详解Python进行数据相关性分析的三种方式

目录 相关性实现 NumPy 相关性计算 SciPy 相关性计算 Pandas 相关性计算 线性相关实现 线性回归:SciPy 实现 等级相关 排名:SciPy 实现 等级相关性:NumPy 和 SciPy 实现 等级相关性:Pandas 实现 相关性的可视化 带有回归线的 XY 图 相关矩阵的热图 matplotlib 相关矩阵的热图 seaborn 相关性实现 统计和数据科学通常关注数据集的两个或多个变量(或特征)之间的关系.数据集中的每个数据点都是一个观察值,特征是这些观察值的属性或属性.

Python+Matplotlib绘制3D图像的示例详解

目录 1. 绘制3D柱状图 2. 绘制3D曲面图 示例1 示例2 3.绘制3D散点图 4. 绘制3D曲线图 1. 绘制3D柱状图 绘制3D柱状图使用的是axes3d.bar()方法. 可能跟我们中学学的有一点不同的是,其语法如下: bar(left, height, zs=0, zdir=‘z’, *args, **kwargs) 其中left表示指向侧边的轴,zs表示指向我们的方向的轴,height即表示高度的轴.这三者都需要是一维的序列对象.在调用相关方法的时候,比如设置轴标签,还有一点需要

python+matplotlib绘制3D条形图实例代码

本文分享的实例主要实现的是Python+matplotlib绘制一个有阴影和没有阴影的3D条形图,具体如下. 首先看看演示效果: 完整代码如下: import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # setup the figure and axes fig = plt.figure(figsize=(8, 3)) ax1 = fig.add_subplot(121

python/Matplotlib绘制复变函数图像教程

今天发现sympy依赖的库mpmath里也有很多数学函数,其中也有在复平面绘制二维图的函数cplot,具体例子如下 from mpmath import * def f1(z): return z def f2(z): return z**3 def f3(z): return (z**4-1)**(1/4) def f4(z): return 1/z def f5(z): return atan(z) def f6(z): return sqrt(z) cplot(f1) cplot(f2)

python matplotlib中的subplot函数使用详解

python里面的matplotlib.pylot是大家比较常用的,功能也还不错的一个包.基本框架比较简单,但是做一个功能完善且比较好看整洁的图,免不了要网上查找一些函数.于是,为了节省时间,可以一劳永逸.我把常用函数作了一个总结,最后写了一个例子,以后基本不用怎么改了. 一.作图流程: 1.准备数据, , 3作图, 4定制, 5保存, 6显示 1.数据可以是numpy数组,也可以是list 2创建画布: import matplotlib.pyplot as plt #figure(num=N

对python 生成拼接xml报文的示例详解

最近临时工作要生成xml报名,通过MQ接口发送.简单小程序. 自增长拼成xml报文 Test_001.py # encoding=utf-8 import time orderId = '' s1= "\n" # for ID in range(1,5): item1 = "<item>" + \ "<orderID>" + str(ID) + "</orderID>" + \ "

Python中bisect的用法及示例详解

bisect是python内置模块,用于有序序列的插入和查找. 查找: bisect(array, item) 插入: insort(array,item) 查找 import bisect a = [1,4,6,8,12,15,20] position = bisect.bisect(a,13) print(position) # 用可变序列内置的insert方法插入 a.insert(position,13) print(a) 输出: 5 [1, 4, 6, 8, 12, 13, 15, 2

python matplotlib绘制三维图的示例

作者:catmelo 本文版权归作者所有 链接:https://www.cnblogs.com/catmelo/p/4162101.html 本文参考官方文档:http://matplotlib.org/mpl_toolkits/mplot3d/tutorial.html 起步 新建一个matplotlib.figure.Figure对象,然后向其添加一个Axes3D类型的axes对象. 其中Axes3D对象的创建,类似其他axes对象,只不过使用projection='3d'关键词. impo

Python正确重载运算符的方法示例详解

前言 说到运算符重载相信大家都不陌生,运算符重载的作用是让用户定义的对象使用中缀运算符(如 + 和 |)或一元运算符(如 - 和 ~).说得宽泛一些,在 Python 中,函数调用(()).属性访问(.)和元素访问 / 切片([])也是运算符. 我们为 Vector 类简略实现了几个运算符.__add__ 和 __mul__ 方法是为了展示如何使用特殊方法重载运算符,不过有些小问题被我们忽视了.此外,我们定义的Vector2d.__eq__ 方法认为 Vector(3, 4) == [3, 4]

Python+OpenCV人脸检测原理及示例详解

关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) .它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很多通用算法. OpenCV 拥有包括 300 多个 C 函数的跨平台的中.高层 API .它不依赖于其它的外部库 -- 尽管也可以使用某些外部库. OpenCV 对非商业应用和商业应用都是免费 的.同时 OpenCV 提供了对硬件的访问,可以直接访问摄像头,并且 opencv 还提供了一个简单的 GUI(graph

Python中的类与类型示例详解

1.经典类与新式类 在了解Python的类与类型前,需要对Python的经典类(classic classes)与新式类(new-style classes)有个简单的概念. 在Python 2.x及以前的版本中,由任意内置类型派生出的类(只要一个内置类型位于类树的某个位置),都属于"新式类",都会获得所有"新式类"的特性:反之,即不由任意内置类型派生出的类,则称之为"经典类". "新式类"和"经典类"的区

python中reload(module)的用法示例详解

前言 本文主要给大家介绍了关于python中reload(module)用法的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧. 1.Python2中可以和Python3中关于reload()用法的区别. Python2 中可以直接使用reload(module)重载模块. Pyhton3中需要使用如下方式: (1) >>> from imp >>> imp.reload(module) (2) >>> from imp imp