Kotlin协程的线程调度示例详解
目录
- 引言
- 一、协程的分发器作用
- 1.1 测试代码
- 1.2 CoroutineScope.launch
- 1.2.1 newCoroutineContext
- 1.3 startCoroutineCancellable
- 1.3.1 intercepted()
- 1.3.2 CoroutineDispatcher
- 1.3.3 小结
- 1.4 DispatchedContinuation
- 1.5 DefaultScheduler
- 1.5.1 SchedulerCoroutineDispatcher
- 1.5.2 CoroutineScheduler
- 1.6 DispatchedTask.run()
- 1.7 总结
- 二、协程中的线程切换
- 2.1 反编译代码
- 2.1.1 MainActivityonCreateonCreateonCreate1
- 2.1.2 AnonymousClass1
- 2.2 withContext
- 2.2.1 startCoroutineCancellable
- 2.3 resumeWith
- 2.4 DispatchedCoroutine
- 2.4.1 DispatchedCoroutine 的继承关系
- 2.5 协程线程的恢复
- 2.5.1 AbstractCoroutine.resumeWith()
- 2.5.2 afterResume
- 2.6 总结
- 2.7 Dispatchers.Main
- 2.7.1 MainDispatcherLoader
- 2.7.2 AndroidDispatcherFactory
- 2.7.3 HandlerContext
引言
在第一篇文章中我们分析了协程启动创建过程启动过程,在本文中,我们将着重剖析协程中协程调度的逻辑流程。主要是分析解答如下2个问题:
- 涉及到协程方法器是如何将协程代码调度到特定的线程执行?
- 子协程执行完又是如何切换0回父协程的线程环境?
一、协程的分发器作用
1.1 测试代码
GlobalScope.launch {
//协程体1
Log.d(TAG, "before suspend job.")
withContext(Dispatchers.Main) {
//协程体2
Log.d(TAG, "print in Main thread.")
}
Log.d(TAG, "after suspend job.")
}
- 此次的协程测试用例中,我们默认的
launch一个协程,我们简单的将launch需要执行的这外层逻辑为协程体1。 - 在协程体1中,我们使用
withContext将协程切换到主线程执行,打印日志。我们将这里面执行的协程逻辑为协程体2。 - 协程体2执行完成后,切回协程体1中执行并打印Log。
- 注意,根据我们之前《协程的创建与启动》文章中分析的,Kotlin编译器针对协程体1和协程体2分别生成一个继承与
SuspenLamabda的类型,比如:class MainActivity#onCreate$1 : SuspenLambda{...}。我们在讲协程体时,也同时代指这个类实例。
继续跟踪launch()函数执行逻辑,这次跟踪过程不同与《协程的创建与启动》篇章,我们会将侧重点放在启动过程中协程调度器是如何起作用的?接下来见1.2
1.2 CoroutineScope.launch
public fun CoroutineScope.launch(
context: CoroutineContext = EmptyCoroutineContext,
start: CoroutineStart = CoroutineStart.DEFAULT,
block: suspend CoroutineScope.() -> Unit
): Job {
//1. 见1.2.1
val newContext = newCoroutineContext(context)
val coroutine = if (start.isLazy)
LazyStandaloneCoroutine(newContext, block) else
StandaloneCoroutine(newContext, active = true)
//2. 详见1.3
coroutine.start(start, coroutine, block)
return coroutine
}
- 这里会新建一个
CoroutineContext,详见1.2.1 - 根据之前的分析,这个里最终会调用到
startCoroutineCancellable()方法,详见1.3流程。
1.2.1 newCoroutineContext
public actual fun CoroutineScope.newCoroutineContext(context: CoroutineContext): CoroutineContext {
val combined = foldCopies(coroutineContext, context, true)
val debug = if (DEBUG) combined + CoroutineId(COROUTINE_ID.incrementAndGet()) else combined
return
if (combined !== Dispatchers.Default && combined[ContinuationInterceptor] == null)
debug + Dispatchers.Default
else
debug
}
coroutineContext:coroutineContext是CoroutineScope的成员变量,当此时为GlobalScope.coroutineContext==EmptyCoroutineContext
context:由于调用launch时没有指定Context,所以传到此处也是EmptyCoroutineContext。foldCopies()函数将2个context相加并拷贝,最终combied==EmptyCoroutineContext。
而在return这最后判断返回的是debug+Dispatchers.Defatult,所以此时默认的分发器为Dispatchers.Defatult。
这里涉及到的协程Context运算不做深入剖析,简单可以认为协程重写了“+”运算,使得Context之间可以使用“+”来叠加,没有的Element类型会被添加到Element集合,集合中已有的Element类型会被覆盖。
1.3 startCoroutineCancellable
internal fun <R, T> (suspend (R) -> T).startCoroutineCancellable(
receiver: R, completion: Continuation<T>,
onCancellation: ((cause: Throwable) -> Unit)? = null
) =
runSafely(completion) {
//1. 创建SuspendLambda协程体
createCoroutineUnintercepted(receiver, completion)
//2. 拦截:取出分发器,并构建方法器Continuation。详见1.3.1
.intercepted()
//3. 调用方法器Continuation的resume方法,详见1.4
.resumeCancellableWith(Result.success(Unit), onCancellation)
}
- 这里的构建协程体在《协程的创建与启动》一节中已经剖析,不再赘述。
- 进行拦截,注意:这里其实会根据方法器再构建出一个
DispatchedContinuation对象,它也是一个续体类型,这是对协程体的一次包装。详见1.3.1小节。 - 调用拦截器续体的
resumeCancellableWith()开始状态机流转,执行分发流程详见1.4小节。
1.3.1 intercepted()
public fun intercepted(): Continuation<Any?> =
intercepted?: (
//1. 取出拦截器
context[ContinuationInterceptor]?
//2.构建拦截器续体
.interceptContinuation(this)?: this)
.also { intercepted = it }
- 取出当前上下文中的拦截器类型,根据之前1.2.1小节的分析,这里取出来的是
Dispatchers.Defatult。 interceptContinuation(this)为构建拦截器续体,注意这里传入的this是协程体1。 详见1.3.2。
1.3.2 CoroutineDispatcher
//Base class to be extended by all coroutine dispatcher implementations.
public abstract class CoroutineDispatcher :
AbstractCoroutineContextElement(ContinuationInterceptor), ContinuationInterceptor {
public final override fun <T> interceptContinuation(continuation: Continuation<T>):
//详见1.4
Continuation<T> = DispatchedContinuation(this, continuation)
}
直接新建了一个DispatchedContinuation对象实例这里需要注意传入的构建参数:
- this:当前
Dispatcher,也就是Dispatchers.Defatult。 - continuation:协程体1。
1.3.3 小结
自此Continuation.intercepted()方法就分析结束,最终的结果是:用上下文中的Dispatcher和当前Contination对象也就是协程体1,共同作为构建参数,新建了一个DispatchedContinuation对象。
接下来接着1.3中的第三点,调用DispatchedContinuation.resumeCancellableWith()方法开始分析。
1.4 DispatchedContinuation
internal class DispatchedContinuation<in T>(
//1. 分发器
@JvmField val dispatcher: CoroutineDispatcher,
//2. 注意这里将Continuation的实现委托给了continuation成员变量。
@JvmField val continuation: Continuation<T>
) : DispatchedTask<T>(MODE_UNINITIALIZED)
, CoroutineStackFrame,
Continuation<T> by continuation {
//3. 复写属性delegate为自己
override val delegate: Continuation<T>
get() = this
...
// We inline it to save an entry on the stack in cases where it shows (unconfined dispatcher)
// It is used only in Continuation<T>.resumeCancellableWith
@Suppress("NOTHING_TO_INLINE")
inline fun resumeCancellableWith(
result: Result<T>,
noinline onCancellation: ((cause: Throwable) -> Unit)?
) {
val state = result.toState(onCancellation)
//默认为true
if (dispatcher.isDispatchNeeded(context)) {
_state = state
resumeMode = MODE_CANCELLABLE
//4. 详细见
dispatcher.dispatch(context, this)
} else {
executeUnconfined(state, MODE_CANCELLABLE) {
if (!resumeCancelled(state)) {
resumeUndispatchedWith(result)
}
}
}
}
}
这里的dispatcher==Dispatchers.Defatult,所以接下来需要解析Dispatchers.Defatult到底是什么东西。详见1.5
- 成员变量
dispatcher==Dispatchers.Default。 - 成员变量
continucation==协程体1(SuspenLambda类型实例)。同时DispatchedContinuation继承于Continuation接口,它将Continuation接口的实现委托给了成员变量continuation。 deleagte为复写了DispatchedTask.delegate属性,将其返回自己。- 调用分发器也就是
Dispatchers.Defatult的dispatch()方法,注意这里传入的参数:
context:来自Continuation接口的属性,由于委托给了成员变量continuation,所以此context==continuation.context。
this:分发器本身Dispatchers.Defatult
自此这个方法的分析结束:调用分发器的进行分发,接下来分析就开始分析协程方法器CoroutineDispatcher
1.5 DefaultScheduler
//Dispathcer.kt
@JvmStatic
public actual val Default: CoroutineDispatcher = DefaultScheduler
//Dispathcer.kt
// Instance of Dispatchers.Default
internal object DefaultScheduler : SchedulerCoroutineDispatcher(
CORE_POOL_SIZE, MAX_POOL_SIZE,
IDLE_WORKER_KEEP_ALIVE_NS, DEFAULT_SCHEDULER_NAME
) {
...
}
实际上是继承 SchedulerCoroutineDispatcher类型。详见1.5.1
1.5.1 SchedulerCoroutineDispatcher
internal open class SchedulerCoroutineDispatcher(
private val corePoolSize: Int = CORE_POOL_SIZE,
private val maxPoolSize: Int = MAX_POOL_SIZE,
private val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
private val schedulerName: String = "CoroutineScheduler",
) : ExecutorCoroutineDispatcher() {
override val executor: Executor
get() = coroutineScheduler
// This is variable for test purposes, so that we can reinitialize from clean state
private var coroutineScheduler = createScheduler()
private fun createScheduler() =
//1. 详见1.5.2
CoroutineScheduler(corePoolSize, maxPoolSize, idleWorkerKeepAliveNs, schedulerName)
//2. 详见1.5.2
override fun dispatch(context: CoroutineContext, block: Runnable): Unit
= coroutineScheduler.dispatch(block)
...
}
//Executors.kt
//2. 实际上是继承ExecutorCoroutineDispatcher
public abstract class ExecutorCoroutineDispatcher: CoroutineDispatcher(), Closeable {
...
}
- 可以看到实际上调用了
CoroutineScheduler.dispatch方法。此时发现,第二个参数是Runnable类型的,而在1.4小节中,我们知道传入的是this也就是DispatchedContinuation,所以DispatchedContinuation继承的父类中,必定有继承了Runnable接口,而他的run方法的实现也在父类中,这块我们暂时按下不表,接着看继续跟踪coroutineScheduler.dispatch(block)。
1.5.2 CoroutineScheduler
internal class CoroutineScheduler(
@JvmField val corePoolSize: Int,
@JvmField val maxPoolSize: Int,
@JvmField val idleWorkerKeepAliveNs: Long = IDLE_WORKER_KEEP_ALIVE_NS,
@JvmField val schedulerName: String = DEFAULT_SCHEDULER_NAME
) : Executor, Closeable {
...
override fun execute(command: Runnable) = dispatch(command)
fun dispatch(block: Runnable, taskContext: TaskContext = NonBlockingContext, tailDispatch: Boolean = false) {
trackTask() // this is needed for virtual time support
val task = createTask(block, taskContext)
// try to submit the task to the local queue and act depending on the result
val currentWorker = currentWorker()
val notAdded = currentWorker.submitToLocalQueue(task, tailDispatch)
if (notAdded != null) {
if (!addToGlobalQueue(notAdded)) {
// Global queue is closed in the last step of close/shutdown -- no more tasks should be accepted
throw RejectedExecutionException("$schedulerName was terminated")
}
}
val skipUnpark = tailDispatch && currentWorker != null
// Checking 'task' instead of 'notAdded' is completely okay
if (task.mode == TASK_NON_BLOCKING) {
if (skipUnpark) return
signalCpuWork()
} else {
// Increment blocking tasks anyway
signalBlockingWork(skipUnpark = skipUnpark)
}
}
}
- 该类继承了
Executor类,而且它的构建参数可看到是线程池的参数,所以可以知道这个其实是Kotlin协程实现的一个线程池,具体就不跟进去了。 execute()过程也是dispatch过程:将任务投递到任务队列,然后通知线程去取任务执行,自此完成了线程切换动作。- 而在新线程里执行的
Runnable为1.4中的调用代码:dispatcher.dispatch(context, this)中的this,也就是DispatchedContinuation。DispatchedContinuation.kt并没有实现run方法,那么一定是他继承的父类实现了Runnable接口并实现,所以需要接着看它继承的父类:DispatchedTask类。
1.6 DispatchedTask.run()
internal abstract class DispatchedTask<in T>(
@JvmField public var resumeMode: Int
) : SchedulerTask() {
...
internal abstract val delegate: Continuation<T>
@Suppress("UNCHECKED_CAST")
internal open fun <T> getSuccessfulResult(state: Any?): T =
state as T
internal open fun getExceptionalResult(state: Any?): Throwable? =
(state as? CompletedExceptionally)?.cause
public final override fun run() {
assert { resumeMode != MODE_UNINITIALIZED } // should have been set before dispatching
val taskContext = this.taskContext
var fatalException: Throwable? = null
try {
val delegate = delegate as DispatchedContinuation<T>
//1. 取出代理商的续体
val continuation = delegate.continuation
withContinuationContext(continuation, delegate.countOrElement) {
val context = continuation.context
val state = takeState() // NOTE: Must take state in any case, even if cancelled
val exception = getExceptionalResult(state)
val job = if (exception == null && resumeMode.isCancellableMode) context[Job] else null
if (job != null && !job.isActive) {
val cause = job.getCancellationException()
cancelCompletedResult(state, cause)
continuation.resumeWithStackTrace(cause)
} else {
if (exception != null) {
continuation.resumeWithException(exception)
} else {
//1. 被包装的续体的resume方法,真正的开始出发其协程状态机代码。
continuation.resume(getSuccessfulResult(state))
}
}
}
} catch (e: Throwable) {
// This instead of runCatching to have nicer stacktrace and debug experience
fatalException = e
} finally {
val result = runCatching { taskContext.afterTask() }
handleFatalException(fatalException, result.exceptionOrNull())
}
}
}
- 将
delegate转为DispatchedContinuation,应该注意1.4 小节中DispatchedContinuation继承DispatchTask时,便对此delegate进行了复写:
override val delegate: Continuation
get() = this
而此delegate.continucation便是当初newDispatchedContinuation(this)时传入的this,此this就是Kotlin编译器一开始为协程体生成的SuspendLambda类型对象。具体可以回看1.3小节。
- 调用了
continuation.resume()方法触发了协程的状态机进而开始执行协程业务逻辑代码,结合之前1.5.2的分析可以知道,这个方法的调用已经是被dispatch到特定线程,完成线程切换后执行的。所以协程状态机的代码也是跑在新线程上的。
1.7 总结
至此,协程的线程调度分析结束,关键有如下几个要点:
- 创建
SuspendLambda时,他的协程上下文对象来自于comletion.context,默认就是Dispatcher.Default。 SuspendLambda启动时调用了intercept()进行一层包装,得到DispatchedContinuation,后续协程启动是启动的DispatchedContinuation协程。DispatchedContinuation继承于Runnable接口,协程启动时将自己投递到分发器dispatcher执行run方法,从而达到了线程切换效果。- 在
DispatchedContinuation的run方法中,调用SuspendLambda.resume()启动状态机。在新线程执行协程状态机代码。
这一小节中,介绍了如何将协程调度到目的线程执行,接下来分析如何做到随意切换线程后,然后再恢复到原来线程的。
二、协程中的线程切换
在第一小节中,我们搞清楚了协程启动时,协程调度器是如何在其中起作用的。这一小节旨在剖析在协程用分发器切换线程执行新的挂起函数后,是如何切换会原来线程继续执行剩下的逻辑的。
为此,我们需要将1.1的测试代码反编译出来实际代码进而分析。
2.1 反编译代码
2.1.1 MainActivityonCreateonCreateonCreate1
final class MainActivity$onCreate$1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Unit>, Object> {
...
@Override // kotlin.coroutines.jvm.internal.BaseContinuationImpl
public final Object invokeSuspend(Object $result) {
Object coroutine_suspended = IntrinsicsKt.getCOROUTINE_SUSPENDED();
switch (this.label) {
case 0:
ResultKt.throwOnFailure($result);
Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4147xf96cab04());
this.label = 1;
//1. 新建编译器自动生成的继承于SuspendLambda的类型。
AnonymousClass1 anonymousClass1 = new AnonymousClass1(null);
//2. 调用withContext
Object res = BuildersKt.withContext(Dispatchers.getIO(), anonymousClass1, this);
if (res != coroutine_suspended) {
break;
} else {
//挂起
return coroutine_suspended;
}
case 1:
ResultKt.throwOnFailure($result);
break;
default:
throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
}
Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4148xe0c1b328());
return Unit.INSTANCE;
}
}
根据之前的文章分析,这里suspend lambda 的类型都自动生成继承于SuspendLambda的类型。详见2.1.2。
将anonymousClass1传入withContext,而且注意这里传入了this==MainActivity$onCreate$1,详见2.2。
2.1.2 AnonymousClass1
/* compiled from: MainActivity.kt */
public static final class AnonymousClass1 extends SuspendLambda implements Function2<CoroutineScope, Continuation<? super Integer>, Object> {
int label
...
@Override // kotlin.coroutines.jvm.internal.BaseContinuationImpl
public final Object invokeSuspend(Object obj) {
IntrinsicsKt.getCOROUTINE_SUSPENDED();
switch (this.label) {
case 0:
ResultKt.throwOnFailure(obj);
return Boxing.boxInt(Log.d(MainActivity.TAG, LiveLiterals$MainActivityKt.INSTANCE.m4146x7c0f011f()));
default:
throw new IllegalStateException("call to 'resume' before 'invoke' with coroutine");
}
}
}
2.2 withContext
public suspend fun <T> withContext(
context: CoroutineContext,
block: suspend CoroutineScope.() -> T
): T {
contract {
callsInPlace(block, InvocationKind.EXACTLY_ONCE)
}
//1. 获取当前协程, 注意这里的uCont就是当前续体,也就是MainActivity$onCreate$1
return suspendCoroutineUninterceptedOrReturn sc@ { uCont ->
//2. 计算获的新的协程上下文
val oldContext = uCont.context
val newContext = oldContext + context
//3. 快速判断:新上下文和旧上下文一致的情况快速处理。
// always check for cancellation of new context
newContext.ensureActive()
// FAST PATH #1 -- new context is the same as the old one
if (newContext === oldContext) {
val coroutine = ScopeCoroutine(newContext, uCont)
return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
}
// FAST PATH #2 -- the new dispatcher is the same as the old one (something else changed)
// `equals` is used by design (see equals implementation is wrapper context like ExecutorCoroutineDispatcher)
if (newContext[ContinuationInterceptor] == oldContext[ContinuationInterceptor]) {
val coroutine = UndispatchedCoroutine(newContext, uCont)
// There are changes in the context, so this thread needs to be updated
withCoroutineContext(newContext, null) {
return@sc coroutine.startUndispatchedOrReturn(coroutine, block)
}
}
// SLOW PATH -- use new dispatcher
//4. 新建一个DispatchedCoroutine
val coroutine = DispatchedCoroutine(newContext, uCont)
//5. 启动协程
block.startCoroutineCancellable(coroutine, coroutine)
coroutine.getResult()
}
}
suspendCoroutineUninterceptedOrReturn这个函数直接步进是看不到实现的,它的实现是由Kotlin编译器生成的,它的作用是用来获取当前续体的,并且通过uCont返回,这里就是MainActivity$onCreate$1。- 将旧协程上下文和新的上下文一起。计算得到最终的上下文。这里的
context==Dispatchers.getIO()。 - 快速判断,不用看。
- 新建一个
DispatchedCoroutine,注意这里传入了新的协程上下文和当前续体对象。 - 调用
startCoroutineCancellable()启动协程。这里的同1.3.2小节分析一样,详见 2.2.1
2.2.1 startCoroutineCancellable
internal fun <R, T> (suspend (R) -> T).startCoroutineCancellable(
receiver: R, completion: Continuation<T>,
onCancellation: ((cause: Throwable) -> Unit)? = null
) =
runSafely(completion) {
//1. 创建SuspendLambda协程体
createCoroutineUnintercepted(receiver, completion)
//2. 拦截:取出分发器,并构建方法器Continuation。详见1.3.1
.intercepted()
//3. 调用方法器Continuation的resume方法,详见1.4
.resumeCancellableWith(Result.success(Unit), onCancellation)
}
此方法在之前1.3小节已经分析过,针对此此次调用,其中的改变是协程上下文中的分发器已经被设置为Dispatchers.Main。
- 创建了
SuspendLambda对象,此对象的CoroutineContext为completion.context。而其中的ContinuationInterceptor类型Element就是我们之前传入的Dispatchers.Main。 - 创建一个
DispatchedContinuation。 - 将协程
SuspendLambda的状态机逻辑通过Dispatcher.Main调度到主线程执行,调度过程参考第一下节。分发逻辑详见2.7小节。 - 当
SuspendLambda的状态机invokeSuspend()逻辑执行完成后,会返回到BaseContinuationImpl.resumeWith(),我们需要接此方法分析,来得到协程在切换到主线程执行后,又是怎么切回协程体1的执行线程的,详见2.3。
2.3 resumeWith
public final override fun resumeWith(result: Result<Any?>) {
// This loop unrolls recursion in current.resumeWith(param) to make saner and shorter stack traces on resume
var current = this
var param = result
while (true) {
// Invoke "resume" debug probe on every resumed continuation, so that a debugging library infrastructure
// can precisely track what part of suspended callstack was already resumed
probeCoroutineResumed(current)
with(current) {
val completion = completion!! // fail fast when trying to resume continuation without completion
val outcome: Result<Any?> =
try {
val outcome = invokeSuspend(param)
if (outcome === COROUTINE_SUSPENDED) return
Result.success(outcome)
} catch (exception: Throwable) {
Result.failure(exception)
}
releaseIntercepted() // this state machine instance is terminating
if (completion is BaseContinuationImpl) {
// unrolling recursion via loop
current = completion
param = outcome
} else {
//1. 进入此判断
// top-level completion reached -- invoke and return
completion.resumeWith(outcome)
return
}
}
}
}
当状态机执行完后, 后进入到completion的类型判断,由2.2和2.2.1可以知道,当初传入的completion是DispatchedCoroutine类型,所以加入到else分支,调用了DispatchedCoroutine.resumeWith(),接下来分析此方法。
在此之前,我们需要看下DispatchedCoroutine的继承关系,详见2.4.1。如果想直接跟踪流程,可以直接看2.4.2。
2.4 DispatchedCoroutine
2.4.1 DispatchedCoroutine 的继承关系
internal class DispatchedCoroutine<in T>(
context: CoroutineContext,
uCont: Continuation<T>
) : ScopeCoroutine<T>(context, uCont) {
}
继承于ScopeCoroutine
internal open class ScopeCoroutine<in T>(
context: CoroutineContext,
@JvmField val uCont: Continuation<T> // unintercepted continuation
) : AbstractCoroutine<T>(context, true, true), CoroutineStackFrame {
}
继承于AbstractCoroutine
public abstract class AbstractCoroutine<in T>(
parentContext: CoroutineContext,
initParentJob: Boolean,
active: Boolean
) : JobSupport(active), Job, Continuation<T>, CoroutineScope {
}
2.5 协程线程的恢复
2.5.1 AbstractCoroutine.resumeWith()
public final override fun resumeWith(result: Result<T>) {
val state = makeCompletingOnce(result.toState())
if (state === COMPLETING_WAITING_CHILDREN) return
afterResume(state)
}
调用了afterResume方法,此方法在DispatchedCoroutine类型有具体实现。见2.5.2
2.5.2 afterResume
//DispatchedCoroutine
override fun afterResume(state: Any?) {
if (tryResume()) return // completed before getResult invocation -- bail out
// Resume in a cancellable way because we have to switch back to the original dispatcher
uCont.intercepted().resumeCancellableWith(recoverResult(state, uCont))
}
- 取出当前续体
uCont,这个续体根据之前的分析:2.2小节,可以知道它等于MainActivity$onCreate$1。 intercepted():取出其分发拦截器resumeCancellableWith:使用方法拦截器协程体,将uCont续体的状态机逻辑调度到相对应的线程环境执行,这里就是之前的Dispatcher.Default。注意其注释:“将其切换到原先的分发器”。而这一过程其实和1.3小节的过程一致。- 恢复到
Dispatcher.Default继续执行状态机时,由于label已经被更新,所以会往下继续执行,打印最后一句log。
2.6 总结
withContext(Dispatcher.Main)启动的协程时,取得当前协程续体uCount也就是MainActivity$onCreate$1,会计算出新的协程context,然后用它们创建一个DispatchedCoroutine。
AnonymousClass1协程启动时,用DispatchedCoroutine作为completion参数,然后启动,此时会调度主线程执行协程。
当协程执行完成后,AnonymousClass1.resumeWith()方法会调用completion.resumeWith()。
DispatchedCoroutine.resumeWith()方法会调用uCount.intercepted().resumeCancellableWith(),使得父协程进行调度并接着执行状态机逻辑。
2.7 Dispatchers.Main
@JvmStatic
public actual val Main: MainCoroutineDispatcher get()
= MainDispatcherLoader.dispatcher
直接详见2.7.1
2.7.1 MainDispatcherLoader
internal object MainDispatcherLoader {
private val FAST_SERVICE_LOADER_ENABLED = systemProp(FAST_SERVICE_LOADER_PROPERTY_NAME, true)
@JvmField
val dispatcher: MainCoroutineDispatcher = loadMainDispatcher()
private fun loadMainDispatcher(): MainCoroutineDispatcher {
return try {
val factories = if (FAST_SERVICE_LOADER_ENABLED) {
FastServiceLoader.loadMainDispatcherFactory()
} else {
// We are explicitly using the
// `ServiceLoader.load(MyClass::class.java, MyClass::class.java.classLoader).iterator()`
// form of the ServiceLoader call to enable R8 optimization when compiled on Android.
// 1.获得MainDispatcherFactory的实现类
ServiceLoader.load(
MainDispatcherFactory::class.java,
MainDispatcherFactory::class.java.classLoader
).iterator().asSequence().toList()
}
@Suppress("ConstantConditionIf")
factories.maxByOrNull { it.loadPriority }?.tryCreateDispatcher(factories)
?: createMissingDispatcher()
} catch (e: Throwable) {
// Service loader can throw an exception as well
createMissingDispatcher(e)
}
}
}
- 通过ServiceLoad机制获取
MainDispatcherFactory的实现类,而在源码里面,其实现类为AndroidDispatcherFactory - 调用
tryCreateDispatcher()创建分发器,详见2.7.2。
2.7.2 AndroidDispatcherFactory
internal class AndroidDispatcherFactory : MainDispatcherFactory {
override fun createDispatcher(allFactories: List<MainDispatcherFactory>) =
HandlerContext(Looper.getMainLooper().asHandler(async = true))
override fun hintOnError(): String = "For tests Dispatchers.setMain from kotlinx-coroutines-test module can be used"
override val loadPriority: Int
get() = Int.MAX_VALUE / 2
}
根据createDispatcher分发,主线程分发器的实现类为HandlerContext类型,传入用MainLooper构建的Handler。详见2.7.3。
2.7.3 HandlerContext
internal class HandlerContext private constructor(
private val handler: Handler,
private val name: String?,
private val invokeImmediately: Boolean
) : HandlerDispatcher(), Delay {
/**
* Creates [CoroutineDispatcher] for the given Android [handler].
*
* @param handler a handler.
* @param name an optional name for debugging.
*/
constructor(
handler: Handler,
name: String? = null
) : this(handler, name, false)
@Volatile
private var _immediate: HandlerContext? = if (invokeImmediately) this else null
override val immediate: HandlerContext = _immediate ?:
HandlerContext(handler, name, true).also { _immediate = it }
override fun isDispatchNeeded(context: CoroutineContext): Boolean {
return !invokeImmediately || Looper.myLooper() != handler.looper
}
override fun dispatch(context: CoroutineContext, block: Runnable) {
if (!handler.post(block)) {
cancelOnRejection(context, block)
}
}
override fun scheduleResumeAfterDelay(timeMillis: Long, continuation: CancellableContinuation<Unit>) {
val block = Runnable {
with(continuation) { resumeUndispatched(Unit) }
}
if (handler.postDelayed(block, timeMillis.coerceAtMost(MAX_DELAY))) {
continuation.invokeOnCancellation { handler.removeCallbacks(block) }
} else {
cancelOnRejection(continuation.context, block)
}
}
...
}
HandlerContext继承于HandlerDispatcher,而他的dispatch方法,可以看到,就是将block丢到设置MainLooper的handler执行。所以续体将会在主线程执行状态机,达到切换到主线程执行协程的目的。
以上就是Kotlin协程的线程调度示例详解的详细内容,更多关于Kotlin协程的线程调度的资料请关注我们其它相关文章!
