python中Task封装协程的知识点总结

说明

1、Task是Future的子类,Task是对协程的封装,我们把多个Task放在循环调度列表中,等待调度执行。

2、Task对象可以跟踪任务和状态。Future(Task是Futrue的子类)为我们提供了异步编程中最终结果的处理(Task类还具有状态处理功能)。

3、把协程封装成Task,加入一个队列等待调用。刚创建Task的时候不执行,遇到await就执行。

实例

import asyncio

async def func():
print(1)
await asyncio.sleep(2)
print(2)
return "返回值"

async def main():
print("main开始")

# 创建协程,将协程封装到Task对象中并添加到事件循环的任务列表中,等待事件循环去执行(默认是就绪状态)。
# 在调用
task_list = [
asyncio.create_task(func(), name="n1"),
asyncio.create_task(func(), name="n2")
]

print("main结束")

# 当执行某协程遇到IO操作时,会自动化切换执行其他任务。
# 此处的await是等待所有协程执行完毕,并将所有协程的返回值保存到done
# 如果设置了timeout值,则意味着此处最多等待的秒,完成的协程返回值写入到done中,未完成则写到pending中。
done, pending = await asyncio.wait(task_list, timeout=None)
print(done, pending)

asyncio.run(main())

知识点扩展:

Task 概念及用法

  • Task,是 python 中与事件循环进行交互的一种主要方式。

创建 Task,意思就是把协程封装成 Task 实例,并追踪协程的 运行 / 完成状态,用于未来获取协程的结果。

  • Task 核心作用:在事件循环中添加多个并发任务;

具体来说,是通过 asyncio.create_task() 创建 Task,让协程对象加入时事件循环中,等待被调度执行。

注意:Python 3.7 以后的版本支持 asyncio.create_task(),在此之前的写法为 loop.create_task(),开发过程中需要注意代码写法对不同版本 python 的兼容性。

  • 需要指出的是,协程封装为 Task 后不会立马启动,当某个代码 await 这个 Task 的时候才会被执行。

当多个 Task 被加入一个 task_list 的时候,添加 Task 的过程中 Task 不会执行,必须要用 await asyncio.wait() 或 await asyncio.gather() 将 Task 对象加入事件循环中异步执行。

  • 一般在开发中,常用的写法是这样的:

-- 先创建 task_list 空列表;
-- 然后用 asyncio.create_task() 创建 Task;
-- 再把 Task 对象加入 task_list;
-- 最后使用 await asyncio.wait 或 await asyncio.gather 将 Task 对象加入事件循环中异步执行。

注意:创建 Task 对象时,除了可以使用 asyncio.create_task() 之外,还可以用最低层级的 loop.create_task() 或 asyncio.ensure_future(),他们都可以用来创建 Task 对象,其中关于 ensure_future 相关内容本文接下来会一起讲。

Task 用法代码示例:

import asyncio
import arrow

def current_time():
    '''
    获取当前时间
    :return:
    '''
    cur_time = arrow.now().to('Asia/Shanghai').format('YYYY-MM-DD HH:mm:ss')
    return cur_time

async def func(sleep_time):
    func_name_suffix = sleep_time        # 使用 sleep_time(函数 I/O 等待时长)作为函数名后缀,以区分任务对象
    print(f"[{current_time()}] 执行异步函数 {func.__name__}-{func_name_suffix}")
    await asyncio.sleep(sleep_time)
    print(f"[{current_time()}] 函数 {func.__name__}-{func_name_suffix} 执行完毕")
    return f"【[{current_time()}] 得到函数 {func.__name__}-{func_name_suffix} 执行结果】"

async def run():
    task_list = []
    for i in range(5):
        task = asyncio.create_task(async_func(i))
        task_list.append(task)

    done, pending = await asyncio.wait(task_list, timeout=None)
    for done_task in done:
        print((f"[{current_time()}] 得到执行结果 {done_task.result()}"))

def main():
    loop = asyncio.get_event_loop()
    loop.run_until_complete(run())

if __name__ == '__main__':
    main()

到此这篇关于python中Task封装协程的知识点总结的文章就介绍到这了,更多相关python中Task封装协程内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-07-19

python 单线程和异步协程工作方式解析

在python3.4之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO[HTTP连接就是网络IO操作]),实现应用程序级别的切换(异步IO).注意:asyncio只能发tcp级别的请求,不能发http协议. 异步IO:所谓「异步 IO」,就是你发起一个 网络IO 操作,却不用等它结束,你可以继续做其他事情,当它结束时,你会得到通知. 实现方式:单线程+协程实现异步IO操作. 异步协程用法 接下来让我们来了解下协程的实现,从 Python 3.4 开始,Python 中加入了协程的概

python简单线程和协程学习心得(分享)

python中对线程的支持的确不够,不过据说python有足够完备的异步网络框架模块,希望日后能学习到,这里就简单的对python中的线程做个总结 threading库可用来在单独的线程中执行任意的python可调用对象.尽管此模块对线程相关操作的支持不够,但是我们还是能够用简单的线程来处理I/O操作,以减低程序响应时间. from threading import Thread import time def countdown(n): while n > 0: print('T-minus:

Python异步编程之协程任务的调度操作实例分析

本文实例讲述了Python异步编程之协程任务的调度操作.分享给大家供大家参考,具体如下: 我们知道协程是异步进行的,碰到IO阻塞型操作时需要调度其他任务,那么这个调度规则或者是算法是怎样的呢?现在有以下几个疑问: 1.多个任务准备好,需要运行时,优先执行哪一个? 2.一个任务运行时,如果别的任务准备好了,是否需要中断当前任务呢? 在网上找了很多资料,也无法找到相关的资料,于是编写了几个简单的程序,查看任务的执行过程. 根据Python的asyncio我们可以编写一个简单的程序: import a

python中列表的切片与修改知识点总结

python中可以使用下标索引来访问列表中的值,对列表进行切片即截取,也可以对列表的数据项进行修改或更新. 使用下标索引来访问列表中的值,例如list1[1]. 使用索引截取列表中的值,例如list1[2:4],截取列表内容不包括list1[4]. 列表的修改: 使用索引修改列表中的值,例如list1[1]=200. 使用append()方法来添加列表项,例如list1.append('d'). 使用insert()方法来添加列表项,例如list1.insert(3,'d'). append是在

Python手动或自动协程操作方法解析

1.手动协程操作: # pip install gevent from greenlet import greenlet def test(): print('He ') gr2.switch() # 切换到test2 print('a ') gr2.switch() def test2(): print('is ') gr1.switch() print('student.') gr1 = greenlet(test) # 创建一个协程 gr2 = greenlet(test2) gr1.sw

python中树与树的表示知识点总结

一.什么是树 客观世界中许多事物存在层次关系 人类社会家谱社会组织结构图书信息管理 其中,人类社会家谱如下图所示: 通过上述所说的分层次组织,能够使我们在数据的管理上有更高的效率!那么,对于数据管理的基本操作--查找,我们如何实现有效率的查找呢? 二.查找 查找:根据某个给定关键字K,从集合R中找出关键字与K相同的记录 静态查找:集合中记录是固定的,即对集合的操作没有插入和删除,只有查找 动态查找:集合中记录是动态变化的,即对集合的操作既有查找,还可能发生插入和删除(动态查找不在我们考虑范围内)

python3爬虫中异步协程的用法

1. 前言 在执行一些 IO 密集型任务的时候,程序常常会因为等待 IO 而阻塞.比如在网络爬虫中,如果我们使用 requests 库来进行请求的话,如果网站响应速度过慢,程序一直在等待网站响应,最后导致其爬取效率是非常非常低的. 为了解决这类问题,本文就来探讨一下 Python 中异步协程来加速的方法,此种方法对于 IO 密集型任务非常有效.如将其应用到网络爬虫中,爬取效率甚至可以成百倍地提升. 注:本文协程使用 async/await 来实现,需要 Python 3.5 及以上版本. 2.

Python中协程用法代码详解

本文研究的主要是python中协程的相关问题,具体介绍如下. Num01–>协程的定义 协程,又称微线程,纤程.英文名Coroutine. 首先我们得知道协程是啥?协程其实可以认为是比线程更小的执行单元. 为啥说他是一个执行单元,因为他自带CPU上下文.这样只要在合适的时机, 我们可以把一个协程 切换到另一个协程. 只要这个过程中保存或恢复 CPU上下文那么程序还是可以运行的. Num02–>协程和线程的差异 那么这个过程看起来和线程差不多.其实不然, 线程切换从系统层面远不止保存和恢复 CP

浅析python协程相关概念

这篇文章是读者朋友的python协程的学习经验之谈,以下是全部内容: 协程的历史说来话长,要从生成器开始讲起. 如果你看过我之前的文章python奇遇记:迭代器和生成器 ,对生成器的概念应该很了解.生成器节省内存,用的时候才生成结果. # 生成器表达式 a = (x*x for x in range(10)) # next生成值 next(a()) # 输出0 next(a()) # 输出1 next(a()) # 输出4 与生成器产出数据不同的是,协程在产出数据的同时还可以接收数据,具体来说就

详解python中asyncio模块

一直对asyncio这个库比较感兴趣,毕竟这是官网也非常推荐的一个实现高并发的一个模块,python也是在python 3.4中引入了协程的概念.也通过这次整理更加深刻理解这个模块的使用 asyncio 是干什么的? 异步网络操作并发协程 python3.0时代,标准库里的异步网络模块:select(非常底层) python3.0时代,第三方异步网络库:Tornado python3.4时代,asyncio:支持TCP,子进程 现在的asyncio,有了很多的模块已经在支持:aiohttp,ai