TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)

记录一下安装win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5

之前已经安装过pycharm、Anaconda以及VS2013,因此,安装记录从此后开始

总体步骤大致如下:

1、确认自己电脑显卡型号是否支持CUDA(此处有坑)

此处有坑!不要管NVIDIA控制面板组件中显示的是CUDA9.2.148。

你下载的CUDA不一定需要匹配,尤其是CUDA9.2,最好使用CUDA9.0,我就在此坑摔的比较惨。

2、下载CUDA以及cuDNN,注意版本对应①查看版本匹配:

https://www.tensorflow.org/install/source_windows

②下载CUDA:

https://developer.nvidia.com/cuda-toolkit-archive

官网上下载的CUDA 9.0有好几个版本,其中主要是cuda_9.0.176_win10.exe,其他的四个是补丁。

③下载cuDNN:

https://developer.nvidia.com/cudnn

https://developer.nvidia.com/rdp/cudnn-archive

下载cuDNN需要注册一个NVIDIA的账号。

3、安装CUDA和cuDNN,并设置环境变量(重要)①CUDA安装

我是按照默认路径安装的,没有修改。此外,使用自定义安装,但是几乎全选了,除了一个当前版本已经是最新版本的组件没有勾选。

切记CUDA的安装路径,因为安装cuDNN以及设置环境变量时需要。

②cuDNN9.0安装

cuDNN是一个压缩包,解压后的内容如下

全选并复制所有内容,粘贴到CUDA的安装路径下,默认路径是:

③设置环境变量(重要)

这部分我主要参考的是:https://blog.csdn.net/qilixuening/article/details/77503631

计算机上点右键,打开属性->高级系统设置->环境变量,可以看到系统中多了两个环境变量,接下来,分别是:

CUDA_PATH和CUDA_PATH_V8_0。

还要在系统变量中新建以下几个环境变量:

CUDA_SDK_PATH = C:\ProgramData\NVIDIA Corporation\CUDA Samples\v9.0

CUDA_LIB_PATH = %CUDA_PATH%\lib\x64

CUDA_BIN_PATH = %CUDA_PATH%\bin

CUDA_SDK_BIN_PATH = %CUDA_SDK_PATH%\bin\win64

CUDA_SDK_LIB_PATH = %CUDA_SDK_PATH%\common\lib\x64

如下图所示:

然后在系统变量中找到 PATH,点击编辑并添加:

%CUDA_LIB_PATH%

%CUDA_BIN_PATH%

%CUDA_SDK_LIB_PATH%

%CUDA_SDK_BIN_PATH%

再添加如下4条(默认安装路径):

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\lib\x64;

C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v8.0\bin;

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\common\lib\x64;

C:\ProgramData\NVIDIA Corporation\CUDA Samples\v8.0\bin\win64;

如果你选用了自定义路径,上述这些默认路径都应该相应替换为你的自定义路径。

④查验是否安装成功

重启计算机(必须),然后在Anaconda prompt中输入nvcc -V。(注意,V是大写)返回以下信息则安装成功。

4、创建tensorflow-gpu环境并激活

(此部分可参考的教程比较多,可自行搜索)

①conda create --name tensorflow-gpu python=3.5

在Anaconda Prompt 中输入conda create --name tensorflow-gpu python=3.5,创建名为tensorflow-gpu的环境(名字可以自己改,不一定都叫tensorflow-gpu)。

②activate tensorflow-gpu

按照提示,接下来activate tensorflow-gpu,进入到新创建的环境,退出时使用deactivate

③conda info --envs

最后,conda info --envs,查看创建的所有环境,确保tensorflow-gpu环境创建成功

5、安装tensorflow-gpu

使用activate进入到tensorflow-gpu环境,使用以下命令进行安装:

pip install --ignore-installed --upgrade tensorflow-gpu==1.12.0

如果安装缓慢请参考其他教程换源。

6、查验tensorflow是否安装成功

这部分主要参考:https://zhuanlan.zhihu.com/p/58607298

①activate到tensorflow-gpu环境中然后输入python进入到python中,输入一下代码:

import tensorflow as tf
hello = tf.constant('Hello , Tensorflow! ')
sess = tf.Session()
print(sess.run(hello))

预期输出:

b'Hello , Tensorflow! '

中间会有一大堆关于 GPU的Log信息,例如:

2020-06-22 09:47:38.562662: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports instructions that this TensorFlow binary was not compiled to use: AVX2
2020-06-22 09:47:39.111893: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1432] Found device 0 with properties:
name: GeForce GTX 1060 major: 6 minor: 1 memoryClockRate(GHz): 1.6705
pciBusID: 0000:01:00.0
totalMemory: 6.00GiB freeMemory: 4.97GiB
2020-06-22 09:47:39.134322: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1511] Adding visible gpu devices: 0
2020-06-22 09:47:41.602201: I tensorflow/core/common_runtime/gpu/gpu_device.cc:982] Device interconnect StreamExecutor with strength 1 edge matrix:
2020-06-22 09:47:41.612905: I tensorflow/core/common_runtime/gpu/gpu_device.cc:988] 0
2020-06-22 09:47:41.618302: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1001] 0: N
2020-06-22 09:47:41.631165: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1115] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 4722 MB memory) -> physical GPU (device: 0, name: GeForce GTX 1060, pci bus id: 0000:01:00.0, compute capability: 6.1)

如果只是平时做小规模的训练,可以在Python Code前设置log等级:

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

如果想彻底解决,请参考:https://www.jb51.net/article/189242.htm

②查看TensorFlow和Keras版本:

import tensorflow as tf
from tensorflow.keras import layers
print(tf.VERSION)
print(tf.keras.__version__)

输出:

1.12.0
2.1.6-tf

7、在pycharm中调用tensorflow,

并查验tensorflow是否能够调用gpu做运算

①在PyCharm中新建Project

②进入中Existing interpreter右侧浏览目录

③在Interpreter右侧浏览目录中找到自己安装Anaconda的路径,在其中的envs文件夹中,有上文中自己创建的tensorflow-gpu环境,选中其中python.exe即可。

④在pycharm中查验tensorflow是否能够调用gpu做运算查验tensorflow是否能够调用gpu做运算:

创建一个.py文件,用TensorFlow,来比较一下CPU和GPU的时间差异:

例子来源:https://zhuanlan.zhihu.com/p/58607298

import tensorflow as tf
import timeit
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'

# See https://www.tensorflow.org/tutorials/using_gpu#allowing_gpu_memory_growth
config = tf.ConfigProto()
config.gpu_options.allow_growth = True

with tf.device('/cpu:0'):
 random_image_cpu = tf.random_normal((100, 1000, 100, 3))
 net_cpu = tf.layers.conv2d(random_image_cpu, 32, 7)
 net_cpu = tf.reduce_sum(net_cpu)

with tf.device('/gpu:0'):
 random_image_gpu = tf.random_normal((100, 1000, 100, 3))
 net_gpu = tf.layers.conv2d(random_image_gpu, 32, 7)
 net_gpu = tf.reduce_sum(net_gpu)

sess = tf.Session(config=config)

# Test execution once to detect errors early.
try:
 sess.run(tf.global_variables_initializer())
except tf.errors.InvalidArgumentError:
 print(
 '如果出了这个Error表示GPU配置不成功!\n\n')
 raise

def cpu():
 sess.run(net_cpu)

def gpu():
 sess.run(net_gpu)

# Runs the op several times.
print('Time (s) to convolve 32x7x7x3 filter over random 100x1000x100x3 images '
 '(batch x height x width x channel). Sum of ten runs.')
print('CPU (s):')
cpu_time = timeit.timeit('cpu()', number=10, setup="from __main__ import cpu")
print(cpu_time)
print('GPU (s):')
gpu_time = timeit.timeit('gpu()', number=10, setup="from __main__ import gpu")
print(gpu_time)
print('GPU speedup over CPU: {}x'.format(int(cpu_time / gpu_time)))

sess.close()

输出:

Time (s) to convolve 32x7x7x3 filter over random 100x1000x100x3 images (batch x height x width x channel). Sum of ten runs.
CPU (s):
25.24234085335886
GPU (s):
1.5711942943447745
GPU speedup over CPU: 16x

输出表明:这个任务GPU和6个i7的CPU相比快了16倍!

安装踩坑总结:

其中最大的坑就是CUDA、cuDNN、tensorflow-gpu以及python版本之间的匹配了。有时候明明按照官方的版本匹配列表安装,也是不行。

安装之后如果出现“ImportError: DLL load failed: 找不到指定的模块”错误,一般问题都是出在了版本不匹配上。

最需要注意的是CUDA9.2 。最初在NVIDIA控制面板,显示我的显卡支持CUDA 9.2.148,因此我按照推荐列表,选择tensorflow-gpu1.12.0+cuDNN 7.5.0.56+CUDA 9.2.148 +python3.5.5。注意此处有坑!!无论如何都是安装不成功,一直都是“ImportError: DLL load failed: 找不到指定的模块”这个错误。

后来看到有网友说,推荐列表中只给出CUDA版本号 的第一位,一般使用的都是CUDA9.0或者CUDA10.0,后面版本可能会出现不兼容。

于是,卸载CUDA9.2(不要管NVIDIA控制面板组件中显示的是CUDA9.2.148,不一定需要匹配),重新在推荐列表中寻找匹配的cuDNN以及tensorflow-gpu版本,最后成功安装。

总结

到此这篇关于TensorFlow的环境配置与安装教程详解(win10+GeForce GTX1060+CUDA 9.0+cuDNN7.3+tensorflow-gpu 1.12.0+python3.5.5)的文章就介绍到这了,更多相关TensorFlow环境配置与安装内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2020-06-22

windows环境下tensorflow安装过程详解

一.前言 本次安装tensorflow是基于Python的,安装Python的过程不做说明(既然决定按,Python肯定要先了解啊):本次教程是windows下Anaconda安装Tensorflow的过程(cpu版,显卡不支持gpu版的...) 二.安装环境 (tensorflow支持的系统是64位的,windows和linux,mac都需要64位) windows7(其实和windows版本没什么关系,我的是windows7,安装时参照的有windows10的讲解) Python3.5.2(

Anaconda+VSCode配置tensorflow开发环境的教程详解

1. Anaconda 1.1 Anaconda简介 Anaconda是一个开源的python发行版本,是现在比较流行的python数据科学平台,可以对python的科学包做到有效管理.在配置python开发环境时,比如爬虫环境.数据分析环境.深度学习开发环境(tensorflow)等,会需要安装很多科学包.如果遇到什么包就报出"No module named"的错误,然后"pip install"未免太过麻烦.而且很多开发环境支持的python版本不同,混在一起的

Windows10下Tensorflow2.0 安装及环境配置教程(图文)

下载安装Anaconda 下载地址如下,根据所需版本下载 安装过程暂略(下次在安装时添加) 下载安装Pycharm 下载安装Pycharm,下载对应使用版本即可 如果你是在校学生,有学校的edu邮箱,可以免费注册Pycharm专业版,注册地址如下,本文不详细说明 下载CUDA10.0 下载地址如下CUDA Toolkit 10.0 Archive 下载之后默认安装即可 下载CUDNN 通过此处选择版本对应的CUDNN,对于本次配置就选择Windows 10对应的版本 下载CUDNN需要注册一个N

win10下python3.5.2和tensorflow安装环境搭建教程

在win10环境下搭建python3.5.2和tensorflow平台,供大家参考,具体内容如下 操作步骤如下: 1.官网(https://www.python.org/ )下载python3.5.2  选择Downloads-Windows 选择64位executable installer 2.安装过程,双击.exe可执行文件(此步可参考安装教程:win10环境下python3.5安装步骤图文教程) 一路默认下去! 3.安装成功后打开cmd命令窗口 print("Hello World!&q

Win7下Python与Tensorflow-CPU版开发环境的安装与配置过程

以此文记录Python与Tensorflow及其开发环境的安装与配置过程,以备以后参考. 1 硬件与系统条件 Win7 64位系统,显卡为NVIDIA GeforeGT 635M 2 安装策略 a.由于以上原因,选择在win7下安装cpu版的tensorflow,使用anconda安装,总结下来,这么做是代价最小的. b. 首先,不要急于下载Python,因为最新的版本可能会与Anaconda中的Python版本发生冲突.以目前(截止2017-06-17日)的情况,Anaconda选择Anaco

VS2015开发环境的安装和配置

一.简介 为了避免网上乱七八糟的过时介绍,避免误导初学者,这次把至2016年6月底C#开发环境各种版本的更新和安装过程重新整理一下贡献出来.目的是为了让对C#感兴趣的初学者知道到底哪些是过时的,哪些是最新的,哪些是别有用心的人故意给你挖的坑. 先说一下VS2015的官方网址(这是你了解VS2015以及它到底能做哪些事的第1步): https://www.visualstudio.com/en-us/visual-studio-homepage-vs.aspx 其中: VS2015 Enterpr

Python自动化测试Eclipse+Pydev 搭建开发环境

Python自动化测试 Eclipse+Pydev 搭建开发环境 C#之所以容易让人感兴趣,是因为安装完Visual Studio, 就可以很简单的直接写程序了,不需要做如何配置. 对新手来说,这是非常好的"初体验", 会激发初学者的自信和兴趣. 而有些语言的开发环境的配置非常麻烦, 这让新手有挫败感,没有好的"初体验",可能会对这门语言心存敬畏, 而失去兴趣. 作为一个.NET程序员, 用惯了Visual Studio.  Visual Studio的强大功能,比

Win10下免安装版MySQL5.7的安装和配置教程详解

1.MySQL5.7解压 2.新建配置文件my.ini放在D:\Free\mysql-5.7.26-winx64目录下 [mysql] # 设置mysql客户端默认字符集 default-character-set=utf8 [mysqld] #设置3306端口 port = 3306 # 设置mysql的安装目录 basedir=D:\Free\mysql-5.7.26-winx64 # 设置mysql数据库的数据的存放目录 datadir=D:\Free\mysql-5.7.26-winx6

windows下MySQL5.6版本安装及配置过程附有截图和详细说明

                    编辑者:Vocabulary 下面详细介绍5.6版本MySQL的下载.安装及配置过程. 图1.1 MySQL5.6 目前针对不同用户,MySQL提供了2个不同的版本: Ø         MySQL Community Server:社区版,该版本完全免费,但是官方不提供技术支持. Ø         MySQL Enterprise Server:企业版,它能够高性价比的为企业提供数据仓库应用,支持ACID事物处理,提供完整的提交.回滚.崩溃恢复和行级锁

Visual Studio 2017开发环境的安装图文教程

Visual Studio 2017是微软为了配合.NET战略推出的IDE开发环境,同时也是目前开发C#程序最新的工具,本节以Visual Studio 2017社区版的安装为例讲解具体的安装步骤. 说明:Visual Studio 2017 社区版是完全免费的,其下载地址为:https://www.visualstudio.com/zh-hans/downloads/ . 安装Visual Studio 2017社区版的步骤如下: (1)Visual Studio 2017社区版的安装文件是e

Win7上搭建Cocos2d-x 3.1.1开发环境

开发工具的准备 搭建开发环境需要安装工具包括 Visual Studio python ---(本教程以python2.7.3版本为例),下载地址:http://www.python.org/download/releases/2.7.3/. Cocos2d-x ---(本教程以cocos2d-x-3.0版本为例),下载地址:http://www.cocos2d-x.org/download/version#Cocos2d-x . 安装配置过程 Visual Studio 的安装过程这里就不介绍

详解Windows下运用Docker部署Node.js开发环境

开始 在windows下部署nodejs开发环境着实遍地坑,每遇到一个问题都要去google原因再试图解决.而且如果你想把你写好的应用交给别人跑跑看,他可能同样需要折腾很久才能真正在他的环境下运行起来.被坑了好些时日最终还是放弃,转战Docker. 文章开头先明确一下我们希望实现的效果: 1.依然在Windows下编辑源代码,在Docker容器中运行代码,最后在Windows的浏览器中看到运行结果,方便后续debug. 2.可以将我开发完成的程序和运行环境一起打包制作成Docker的image,

Macbook安装Python最新版本、GUI开发环境、图像处理、视频处理环境详解

1.安装 有两种安装方法: 方法一:从Mac自带的python安装,命令如下: $brewinstall python 如果出错的话前面加上sudo 方法一安装的是python2.7 方法二:从官网下载安装最新版本(本次安装的内容) 官网地址:https://www.python.org/download,下载安装最新版的python ,安装简单,一路点击OK:不便之处是后续卸载维护需要手动进行. 可以用这个命令查看python3安装的位置: $which python3 安装完成后在终端中键入

mac下Apache + MySql + PHP搭建网站开发环境

首先为什不自己分别搭建Apache,PHP和MySql的环境呢?这样自己可以了解更多知识,说起来也更酷.可也许因为我懒吧,我是那种"既然有现成的,用就是了"的人.君子生非异也,善假于物也.两千年前的荀子就教导我们,要善于利用工具,我为什么非要自己一点一点配置呢? 哈哈,刚才说了windows下的PHP开发环境我用的是AppServ开发套件,Mac下呢,我用XAMPP.这是致力于推广Apache服务器的非营利性项目--Apache Friends推出的工具.其实XAMPP也有window