Python著名游戏实战之方块连接 我的世界

目录
  • 导语
  • 正文
    • (1)《我是世界》游戏规则。
    • (2)主要程序代码。
    • (3)效果图如下。
  • ​总结

导语

《我的世界》是一款自由度极高的游戏,每个新存档的开启,就像是作为造物主的玩家在虚拟空间开辟了一个全新的宇宙。

方块连接世界,云游大好河山。

国庆不是回家了一趟嘛?隔壁家的小胖墩在跟家里的小孩子一起玩手机,一起下载 了这款《我的世界》的游戏,玩儿的可是非常起劲儿了,建房子打怪,别说那房子的模型着实蛮惊艳的哈!

至少我作为一个没玩过的人来说确实是很牛逼了~

至少我做不来哈哈哈!这游戏看着怪好玩儿的撒,小编没忍住,毕竟长假嘛,怎得找点儿事情可做!

于是——今天木木子带大家一起编写的Python 1.0初级版本《我的世界》就要隆重出场了,期不期待吖~

正文

(1)《我是世界》游戏规则。

移动—前进:W,后退:S,向左:A,向右:D,环顾四周:鼠标,跳起:空格键,切换飞行模式:Tab。

选择建筑材料—砖:1,草:2,沙子:3,删除建筑:鼠标左键单击,创建建筑块:鼠标右键单击。

ESC退出程序。

(2)主要程序代码。

'''
主题:
我的世界1.0版本
'''
from __future__ import division

import sys
import math
import random
import time

from collections import deque
from pyglet import image
from pyglet.gl import *
from pyglet.graphics import TextureGroup
from pyglet.window import key, mouse

TICKS_PER_SEC = 60

# Size of sectors used to ease block loading.
SECTOR_SIZE = 16

WALKING_SPEED = 5
FLYING_SPEED = 15

GRAVITY = 20.0
MAX_JUMP_HEIGHT = 1.0 # About the height of a block.
# To derive the formula for calculating jump speed, first solve
#    v_t = v_0 + a * t
# for the time at which you achieve maximum height, where a is the acceleration
# due to gravity and v_t = 0. This gives:
#    t = - v_0 / a
# Use t and the desired MAX_JUMP_HEIGHT to solve for v_0 (jump speed) in
#    s = s_0 + v_0 * t + (a * t^2) / 2
JUMP_SPEED = math.sqrt(2 * GRAVITY * MAX_JUMP_HEIGHT)
TERMINAL_VELOCITY = 50

PLAYER_HEIGHT = 2

if sys.version_info[0] >= 3:
    xrange = range

def cube_vertices(x, y, z, n):
    """ Return the vertices of the cube at position x, y, z with size 2*n.
    """
    return [
        x-n,y+n,z-n, x-n,y+n,z+n, x+n,y+n,z+n, x+n,y+n,z-n,  # top
        x-n,y-n,z-n, x+n,y-n,z-n, x+n,y-n,z+n, x-n,y-n,z+n,  # bottom
        x-n,y-n,z-n, x-n,y-n,z+n, x-n,y+n,z+n, x-n,y+n,z-n,  # left
        x+n,y-n,z+n, x+n,y-n,z-n, x+n,y+n,z-n, x+n,y+n,z+n,  # right
        x-n,y-n,z+n, x+n,y-n,z+n, x+n,y+n,z+n, x-n,y+n,z+n,  # front
        x+n,y-n,z-n, x-n,y-n,z-n, x-n,y+n,z-n, x+n,y+n,z-n,  # back
    ]

def tex_coord(x, y, n=4):
    """ Return the bounding vertices of the texture square.
    """
    m = 1.0 / n
    dx = x * m
    dy = y * m
    return dx, dy, dx + m, dy, dx + m, dy + m, dx, dy + m

def tex_coords(top, bottom, side):
    """ Return a list of the texture squares for the top, bottom and side.
    """
    top = tex_coord(*top)
    bottom = tex_coord(*bottom)
    side = tex_coord(*side)
    result = []
    result.extend(top)
    result.extend(bottom)
    result.extend(side * 4)
    return result

TEXTURE_PATH = 'texture.png'

GRASS = tex_coords((1, 0), (0, 1), (0, 0))
SAND = tex_coords((1, 1), (1, 1), (1, 1))
BRICK = tex_coords((2, 0), (2, 0), (2, 0))
STONE = tex_coords((2, 1), (2, 1), (2, 1))

FACES = [
    ( 0, 1, 0),
    ( 0,-1, 0),
    (-1, 0, 0),
    ( 1, 0, 0),
    ( 0, 0, 1),
    ( 0, 0,-1),
]

def normalize(position):
    """ Accepts `position` of arbitrary precision and returns the block
    containing that position.
    Parameters
    ----------
    position : tuple of len 3
    Returns
    -------
    block_position : tuple of ints of len 3
    """
    x, y, z = position
    x, y, z = (int(round(x)), int(round(y)), int(round(z)))
    return (x, y, z)

def sectorize(position):
    """ Returns a tuple representing the sector for the given `position`.
    Parameters
    ----------
    position : tuple of len 3
    Returns
    -------
    sector : tuple of len 3
    """
    x, y, z = normalize(position)
    x, y, z = x // SECTOR_SIZE, y // SECTOR_SIZE, z // SECTOR_SIZE
    return (x, 0, z)

class Model(object):

    def __init__(self):

        # A Batch is a collection of vertex lists for batched rendering.
        self.batch = pyglet.graphics.Batch()

        # A TextureGroup manages an OpenGL texture.
        self.group = TextureGroup(image.load(TEXTURE_PATH).get_texture())

        # A mapping from position to the texture of the block at that position.
        # This defines all the blocks that are currently in the world.
        self.world = {}

        # Same mapping as `world` but only contains blocks that are shown.
        self.shown = {}

        # Mapping from position to a pyglet `VertextList` for all shown blocks.
        self._shown = {}

        # Mapping from sector to a list of positions inside that sector.
        self.sectors = {}

        # Simple function queue implementation. The queue is populated with
        # _show_block() and _hide_block() calls
        self.queue = deque()

        self._initialize()

    def _initialize(self):
        """ Initialize the world by placing all the blocks.
        """
        n = 80  # 1/2 width and height of world
        s = 1  # step size
        y = 0  # initial y height
        for x in xrange(-n, n + 1, s):
            for z in xrange(-n, n + 1, s):
                # create a layer stone an grass everywhere.
                self.add_block((x, y - 2, z), GRASS, immediate=False)
                self.add_block((x, y - 3, z), STONE, immediate=False)
                if x in (-n, n) or z in (-n, n):
                    # create outer walls.
                    for dy in xrange(-2, 3):
                        self.add_block((x, y + dy, z), STONE, immediate=False)

        # generate the hills randomly
        o = n - 10
        for _ in xrange(120):
            a = random.randint(-o, o)  # x position of the hill
            b = random.randint(-o, o)  # z position of the hill
            c = -1  # base of the hill
            h = random.randint(1, 6)  # height of the hill
            s = random.randint(4, 8)  # 2 * s is the side length of the hill
            d = 1  # how quickly to taper off the hills
            t = random.choice([GRASS, SAND, BRICK])
            for y in xrange(c, c + h):
                for x in xrange(a - s, a + s + 1):
                    for z in xrange(b - s, b + s + 1):
                        if (x - a) ** 2 + (z - b) ** 2 > (s + 1) ** 2:
                            continue
                        if (x - 0) ** 2 + (z - 0) ** 2 < 5 ** 2:
                            continue
                        self.add_block((x, y, z), t, immediate=False)
                s -= d  # decrement side lenth so hills taper off

    def hit_test(self, position, vector, max_distance=8):
        """ Line of sight search from current position. If a block is
        intersected it is returned, along with the block previously in the line
        of sight. If no block is found, return None, None.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position to check visibility from.
        vector : tuple of len 3
            The line of sight vector.
        max_distance : int
            How many blocks away to search for a hit.
        """
        m = 8
        x, y, z = position
        dx, dy, dz = vector
        previous = None
        for _ in xrange(max_distance * m):
            key = normalize((x, y, z))
            if key != previous and key in self.world:
                return key, previous
            previous = key
            x, y, z = x + dx / m, y + dy / m, z + dz / m
        return None, None

    def exposed(self, position):
        """ Returns False is given `position` is surrounded on all 6 sides by
        blocks, True otherwise.
        """
        x, y, z = position
        for dx, dy, dz in FACES:
            if (x + dx, y + dy, z + dz) not in self.world:
                return True
        return False

    def add_block(self, position, texture, immediate=True):
        """ Add a block with the given `texture` and `position` to the world.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position of the block to add.
        texture : list of len 3
            The coordinates of the texture squares. Use `tex_coords()` to
            generate.
        immediate : bool
            Whether or not to draw the block immediately.
        """
        if position in self.world:
            self.remove_block(position, immediate)
        self.world[position] = texture
        self.sectors.setdefault(sectorize(position), []).append(position)
        if immediate:
            if self.exposed(position):
                self.show_block(position)
            self.check_neighbors(position)

    def remove_block(self, position, immediate=True):
        """ Remove the block at the given `position`.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position of the block to remove.
        immediate : bool
            Whether or not to immediately remove block from canvas.
        """
        del self.world[position]
        self.sectors[sectorize(position)].remove(position)
        if immediate:
            if position in self.shown:
                self.hide_block(position)
            self.check_neighbors(position)

    def check_neighbors(self, position):
        """ Check all blocks surrounding `position` and ensure their visual
        state is current. This means hiding blocks that are not exposed and
        ensuring that all exposed blocks are shown. Usually used after a block
        is added or removed.
        """
        x, y, z = position
        for dx, dy, dz in FACES:
            key = (x + dx, y + dy, z + dz)
            if key not in self.world:
                continue
            if self.exposed(key):
                if key not in self.shown:
                    self.show_block(key)
            else:
                if key in self.shown:
                    self.hide_block(key)

    def show_block(self, position, immediate=True):
        """ Show the block at the given `position`. This method assumes the
        block has already been added with add_block()
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position of the block to show.
        immediate : bool
            Whether or not to show the block immediately.
        """
        texture = self.world[position]
        self.shown[position] = texture
        if immediate:
            self._show_block(position, texture)
        else:
            self._enqueue(self._show_block, position, texture)

    def _show_block(self, position, texture):
        """ Private implementation of the `show_block()` method.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position of the block to show.
        texture : list of len 3
            The coordinates of the texture squares. Use `tex_coords()` to
            generate.
        """
        x, y, z = position
        vertex_data = cube_vertices(x, y, z, 0.5)
        texture_data = list(texture)
        # create vertex list
        # FIXME Maybe `add_indexed()` should be used instead
        self._shown[position] = self.batch.add(24, GL_QUADS, self.group,
            ('v3f/static', vertex_data),
            ('t2f/static', texture_data))

    def hide_block(self, position, immediate=True):
        """ Hide the block at the given `position`. Hiding does not remove the
        block from the world.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position of the block to hide.
        immediate : bool
            Whether or not to immediately remove the block from the canvas.
        """
        self.shown.pop(position)
        if immediate:
            self._hide_block(position)
        else:
            self._enqueue(self._hide_block, position)

    def _hide_block(self, position):
        """ Private implementation of the 'hide_block()` method.
        """
        self._shown.pop(position).delete()

    def show_sector(self, sector):
        """ Ensure all blocks in the given sector that should be shown are
        drawn to the canvas.
        """
        for position in self.sectors.get(sector, []):
            if position not in self.shown and self.exposed(position):
                self.show_block(position, False)

    def hide_sector(self, sector):
        """ Ensure all blocks in the given sector that should be hidden are
        removed from the canvas.
        """
        for position in self.sectors.get(sector, []):
            if position in self.shown:
                self.hide_block(position, False)

    def change_sectors(self, before, after):
        """ Move from sector `before` to sector `after`. A sector is a
        contiguous x, y sub-region of world. Sectors are used to speed up
        world rendering.
        """
        before_set = set()
        after_set = set()
        pad = 4
        for dx in xrange(-pad, pad + 1):
            for dy in [0]:  # xrange(-pad, pad + 1):
                for dz in xrange(-pad, pad + 1):
                    if dx ** 2 + dy ** 2 + dz ** 2 > (pad + 1) ** 2:
                        continue
                    if before:
                        x, y, z = before
                        before_set.add((x + dx, y + dy, z + dz))
                    if after:
                        x, y, z = after
                        after_set.add((x + dx, y + dy, z + dz))
        show = after_set - before_set
        hide = before_set - after_set
        for sector in show:
            self.show_sector(sector)
        for sector in hide:
            self.hide_sector(sector)

    def _enqueue(self, func, *args):
        """ Add `func` to the internal queue.
        """
        self.queue.append((func, args))

    def _dequeue(self):
        """ Pop the top function from the internal queue and call it.
        """
        func, args = self.queue.popleft()
        func(*args)

    def process_queue(self):
        """ Process the entire queue while taking periodic breaks. This allows
        the game loop to run smoothly. The queue contains calls to
        _show_block() and _hide_block() so this method should be called if
        add_block() or remove_block() was called with immediate=False
        """
        start = time.clock()
        while self.queue and time.clock() - start < 1.0 / TICKS_PER_SEC:
            self._dequeue()

    def process_entire_queue(self):
        """ Process the entire queue with no breaks.
        """
        while self.queue:
            self._dequeue()

class Window(pyglet.window.Window):

    def __init__(self, *args, **kwargs):
        super(Window, self).__init__(*args, **kwargs)

        # Whether or not the window exclusively captures the mouse.
        self.exclusive = False

        # When flying gravity has no effect and speed is increased.
        self.flying = False

        # Strafing is moving lateral to the direction you are facing,
        # e.g. moving to the left or right while continuing to face forward.
        #
        # First element is -1 when moving forward, 1 when moving back, and 0
        # otherwise. The second element is -1 when moving left, 1 when moving
        # right, and 0 otherwise.
        self.strafe = [0, 0]

        # Current (x, y, z) position in the world, specified with floats. Note
        # that, perhaps unlike in math class, the y-axis is the vertical axis.
        self.position = (0, 0, 0)

        # First element is rotation of the player in the x-z plane (ground
        # plane) measured from the z-axis down. The second is the rotation
        # angle from the ground plane up. Rotation is in degrees.
        #
        # The vertical plane rotation ranges from -90 (looking straight down) to
        # 90 (looking straight up). The horizontal rotation range is unbounded.
        self.rotation = (0, 0)

        # Which sector the player is currently in.
        self.sector = None

        # The crosshairs at the center of the screen.
        self.reticle = None

        # Velocity in the y (upward) direction.
        self.dy = 0

        # A list of blocks the player can place. Hit num keys to cycle.
        self.inventory = [BRICK, GRASS, SAND]

        # The current block the user can place. Hit num keys to cycle.
        self.block = self.inventory[0]

        # Convenience list of num keys.
        self.num_keys = [
            key._1, key._2, key._3, key._4, key._5,
            key._6, key._7, key._8, key._9, key._0]

        # Instance of the model that handles the world.
        self.model = Model()

        # The label that is displayed in the top left of the canvas.
        self.label = pyglet.text.Label('', font_name='Arial', font_size=18,
            x=10, y=self.height - 10, anchor_x='left', anchor_y='top',
            color=(0, 0, 0, 255))

        # This call schedules the `update()` method to be called
        # TICKS_PER_SEC. This is the main game event loop.
        pyglet.clock.schedule_interval(self.update, 1.0 / TICKS_PER_SEC)

    def set_exclusive_mouse(self, exclusive):
        """ If `exclusive` is True, the game will capture the mouse, if False
        the game will ignore the mouse.
        """
        super(Window, self).set_exclusive_mouse(exclusive)
        self.exclusive = exclusive

    def get_sight_vector(self):
        """ Returns the current line of sight vector indicating the direction
        the player is looking.
        """
        x, y = self.rotation
        # y ranges from -90 to 90, or -pi/2 to pi/2, so m ranges from 0 to 1 and
        # is 1 when looking ahead parallel to the ground and 0 when looking
        # straight up or down.
        m = math.cos(math.radians(y))
        # dy ranges from -1 to 1 and is -1 when looking straight down and 1 when
        # looking straight up.
        dy = math.sin(math.radians(y))
        dx = math.cos(math.radians(x - 90)) * m
        dz = math.sin(math.radians(x - 90)) * m
        return (dx, dy, dz)

    def get_motion_vector(self):
        """ Returns the current motion vector indicating the velocity of the
        player.
        Returns
        -------
        vector : tuple of len 3
            Tuple containing the velocity in x, y, and z respectively.
        """
        if any(self.strafe):
            x, y = self.rotation
            strafe = math.degrees(math.atan2(*self.strafe))
            y_angle = math.radians(y)
            x_angle = math.radians(x + strafe)
            if self.flying:
                m = math.cos(y_angle)
                dy = math.sin(y_angle)
                if self.strafe[1]:
                    # Moving left or right.
                    dy = 0.0
                    m = 1
                if self.strafe[0] > 0:
                    # Moving backwards.
                    dy *= -1
                # When you are flying up or down, you have less left and right
                # motion.
                dx = math.cos(x_angle) * m
                dz = math.sin(x_angle) * m
            else:
                dy = 0.0
                dx = math.cos(x_angle)
                dz = math.sin(x_angle)
        else:
            dy = 0.0
            dx = 0.0
            dz = 0.0
        return (dx, dy, dz)

    def update(self, dt):
        """ This method is scheduled to be called repeatedly by the pyglet
        clock.
        Parameters
        ----------
        dt : float
            The change in time since the last call.
        """
        self.model.process_queue()
        sector = sectorize(self.position)
        if sector != self.sector:
            self.model.change_sectors(self.sector, sector)
            if self.sector is None:
                self.model.process_entire_queue()
            self.sector = sector
        m = 8
        dt = min(dt, 0.2)
        for _ in xrange(m):
            self._update(dt / m)

    def _update(self, dt):
        """ Private implementation of the `update()` method. This is where most
        of the motion logic lives, along with gravity and collision detection.
        Parameters
        ----------
        dt : float
            The change in time since the last call.
        """
        # walking
        speed = FLYING_SPEED if self.flying else WALKING_SPEED
        d = dt * speed # distance covered this tick.
        dx, dy, dz = self.get_motion_vector()
        # New position in space, before accounting for gravity.
        dx, dy, dz = dx * d, dy * d, dz * d
        # gravity
        if not self.flying:
            # Update your vertical speed: if you are falling, speed up until you
            # hit terminal velocity; if you are jumping, slow down until you
            # start falling.
            self.dy -= dt * GRAVITY
            self.dy = max(self.dy, -TERMINAL_VELOCITY)
            dy += self.dy * dt
        # collisions
        x, y, z = self.position
        x, y, z = self.collide((x + dx, y + dy, z + dz), PLAYER_HEIGHT)
        self.position = (x, y, z)

    def collide(self, position, height):
        """ Checks to see if the player at the given `position` and `height`
        is colliding with any blocks in the world.
        Parameters
        ----------
        position : tuple of len 3
            The (x, y, z) position to check for collisions at.
        height : int or float
            The height of the player.
        Returns
        -------
        position : tuple of len 3
            The new position of the player taking into account collisions.
        """
        # How much overlap with a dimension of a surrounding block you need to
        # have to count as a collision. If 0, touching terrain at all counts as
        # a collision. If .49, you sink into the ground, as if walking through
        # tall grass. If >= .5, you'll fall through the ground.
        pad = 0.25
        p = list(position)
        np = normalize(position)
        for face in FACES:  # check all surrounding blocks
            for i in xrange(3):  # check each dimension independently
                if not face[i]:
                    continue
                # How much overlap you have with this dimension.
                d = (p[i] - np[i]) * face[i]
                if d < pad:
                    continue
                for dy in xrange(height):  # check each height
                    op = list(np)
                    op[1] -= dy
                    op[i] += face[i]
                    if tuple(op) not in self.model.world:
                        continue
                    p[i] -= (d - pad) * face[i]
                    if face == (0, -1, 0) or face == (0, 1, 0):
                        # You are colliding with the ground or ceiling, so stop
                        # falling / rising.
                        self.dy = 0
                    break
        return tuple(p)

    def on_mouse_press(self, x, y, button, modifiers):
        """ Called when a mouse button is pressed. See pyglet docs for button
        amd modifier mappings.
        Parameters
        ----------
        x, y : int
            The coordinates of the mouse click. Always center of the screen if
            the mouse is captured.
        button : int
            Number representing mouse button that was clicked. 1 = left button,
            4 = right button.
        modifiers : int
            Number representing any modifying keys that were pressed when the
            mouse button was clicked.
        """
        if self.exclusive:
            vector = self.get_sight_vector()
            block, previous = self.model.hit_test(self.position, vector)
            if (button == mouse.RIGHT) or \
                    ((button == mouse.LEFT) and (modifiers & key.MOD_CTRL)):
                # ON OSX, control + left click = right click.
                if previous:
                    self.model.add_block(previous, self.block)
            elif button == pyglet.window.mouse.LEFT and block:
                texture = self.model.world[block]
                if texture != STONE:
                    self.model.remove_block(block)
        else:
            self.set_exclusive_mouse(True)

    def on_mouse_motion(self, x, y, dx, dy):
        """ Called when the player moves the mouse.
        Parameters
        ----------
        x, y : int
            The coordinates of the mouse click. Always center of the screen if
            the mouse is captured.
        dx, dy : float
            The movement of the mouse.
        """
        if self.exclusive:
            m = 0.15
            x, y = self.rotation
            x, y = x + dx * m, y + dy * m
            y = max(-90, min(90, y))
            self.rotation = (x, y)

    def on_key_press(self, symbol, modifiers):
        """ Called when the player presses a key. See pyglet docs for key
        mappings.
        Parameters
        ----------
        symbol : int
            Number representing the key that was pressed.
        modifiers : int
            Number representing any modifying keys that were pressed.
        """
        if symbol == key.W:
            self.strafe[0] -= 1
        elif symbol == key.S:
            self.strafe[0] += 1
        elif symbol == key.A:
            self.strafe[1] -= 1
        elif symbol == key.D:
            self.strafe[1] += 1
        elif symbol == key.SPACE:
            if self.dy == 0:
                self.dy = JUMP_SPEED
        elif symbol == key.ESCAPE:
            self.set_exclusive_mouse(False)
        elif symbol == key.TAB:
            self.flying = not self.flying
        elif symbol in self.num_keys:
            index = (symbol - self.num_keys[0]) % len(self.inventory)
            self.block = self.inventory[index]

    def on_key_release(self, symbol, modifiers):
        """ Called when the player releases a key. See pyglet docs for key
        mappings.
        Parameters
        ----------
        symbol : int
            Number representing the key that was pressed.
        modifiers : int
            Number representing any modifying keys that were pressed.
        """
        if symbol == key.W:
            self.strafe[0] += 1
        elif symbol == key.S:
            self.strafe[0] -= 1
        elif symbol == key.A:
            self.strafe[1] += 1
        elif symbol == key.D:
            self.strafe[1] -= 1

    def on_resize(self, width, height):
        """ Called when the window is resized to a new `width` and `height`.
        """
        # label
        self.label.y = height - 10
        # reticle
        if self.reticle:
            self.reticle.delete()
        x, y = self.width // 2, self.height // 2
        n = 10
        self.reticle = pyglet.graphics.vertex_list(4,
            ('v2i', (x - n, y, x + n, y, x, y - n, x, y + n))
        )

    def set_2d(self):
        """ Configure OpenGL to draw in 2d.
        """
        width, height = self.get_size()
        glDisable(GL_DEPTH_TEST)
        viewport = self.get_viewport_size()
        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        glOrtho(0, max(1, width), 0, max(1, height), -1, 1)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()

    def set_3d(self):
        """ Configure OpenGL to draw in 3d.
        """
        width, height = self.get_size()
        glEnable(GL_DEPTH_TEST)
        viewport = self.get_viewport_size()
        glViewport(0, 0, max(1, viewport[0]), max(1, viewport[1]))
        glMatrixMode(GL_PROJECTION)
        glLoadIdentity()
        gluPerspective(65.0, width / float(height), 0.1, 60.0)
        glMatrixMode(GL_MODELVIEW)
        glLoadIdentity()
        x, y = self.rotation
        glRotatef(x, 0, 1, 0)
        glRotatef(-y, math.cos(math.radians(x)), 0, math.sin(math.radians(x)))
        x, y, z = self.position
        glTranslatef(-x, -y, -z)

    def on_draw(self):
        """ Called by pyglet to draw the canvas.
        """
        self.clear()
        self.set_3d()
        glColor3d(1, 1, 1)
        self.model.batch.draw()
        self.draw_focused_block()
        self.set_2d()
        self.draw_label()
        self.draw_reticle()

    def draw_focused_block(self):
        """ Draw black edges around the block that is currently under the
        crosshairs.
        """
        vector = self.get_sight_vector()
        block = self.model.hit_test(self.position, vector)[0]
        if block:
            x, y, z = block
            vertex_data = cube_vertices(x, y, z, 0.51)
            glColor3d(0, 0, 0)
            glPolygonMode(GL_FRONT_AND_BACK, GL_LINE)
            pyglet.graphics.draw(24, GL_QUADS, ('v3f/static', vertex_data))
            glPolygonMode(GL_FRONT_AND_BACK, GL_FILL)

    def draw_label(self):
        """ Draw the label in the top left of the screen.
        """
        x, y, z = self.position
        self.label.text = '%02d (%.2f, %.2f, %.2f) %d / %d' % (
            pyglet.clock.get_fps(), x, y, z,
            len(self.model._shown), len(self.model.world))
        self.label.draw()

    def draw_reticle(self):
        """ Draw the crosshairs in the center of the screen.
        """
        glColor3d(0, 0, 0)
        self.reticle.draw(GL_LINES)

def setup_fog():
    """ Configure the OpenGL fog properties.
    """
    # Enable fog. Fog "blends a fog color with each rasterized pixel fragment's
    # post-texturing color."
    glEnable(GL_FOG)
    # Set the fog color.
    glFogfv(GL_FOG_COLOR, (GLfloat * 4)(0.5, 0.69, 1.0, 1))
    # Say we have no preference between rendering speed and quality.
    glHint(GL_FOG_HINT, GL_DONT_CARE)
    # Specify the equation used to compute the blending factor.
    glFogi(GL_FOG_MODE, GL_LINEAR)
    # How close and far away fog starts and ends. The closer the start and end,
    # the denser the fog in the fog range.
    glFogf(GL_FOG_START, 20.0)
    glFogf(GL_FOG_END, 60.0)

def setup():
    """ Basic OpenGL configuration.
    """
    # Set the color of "clear", i.e. the sky, in rgba.
    glClearColor(0.5, 0.69, 1.0, 1)
    # Enable culling (not rendering) of back-facing facets -- facets that aren't
    # visible to you.
    glEnable(GL_CULL_FACE)
    # Set the texture minification/magnification function to GL_NEAREST (nearest
    # in Manhattan distance) to the specified texture coordinates. GL_NEAREST
    # "is generally faster than GL_LINEAR, but it can produce textured 图片
    # with sharper edges because the transition between texture elements is not
    # as smooth."
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST)
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_NEAREST)
    setup_fog()

def main():
    window = Window(width=1800, height=1600, caption='Pyglet', resizable=True)
    # Hide the mouse cursor and prevent the mouse from leaving the window.
    window.set_exclusive_mouse(True)
    setup()
    pyglet.app.run()

if __name__ == '__main__':
    main()

(3)效果图如下。

正常的截图:

飞行模式下的截图:在天上越飞越远!幸好我手速比较快,不然看不到这截图了!

​总结

总的来说这初级版本的话很多毛病的哈!哈哈哈哈~大家拿到代码了可以自己修改修改哦~

等一个大佬优化这款Python的我的世界!

你们的支持是我最大的动力!!mua 欢迎大家阅读往期的文章哦~

到此这篇关于Python著名游戏实战之方块连接 我的世界的文章就介绍到这了,更多相关Python 我的世界内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-10-11

python实战之制作表情包游戏

导语 大家好,我是木木子(๑╹◡╹)ノ" 今日迟来的游戏更新! 仅仅是因为最近练车一直没咋时间了~ 科二还挂科了23333~我emo了

Python干货实战之逆向登录世界上最大的游戏平台Stream

目录 前言 采集目标 工具准备 项目思路解析 简易源码分享 大家好,我是辣条. 前言 今天带来爬虫实战的第30篇文章.在挑选游戏的过程中感受学习,让你突飞猛进.python爬虫实战:steam逆向RSA登录解析. 采集目标 网址:steam 工具准备 开发工具:pycharm 开发环境:python3.7, Windows10 使用工具包:requests 项目思路解析 访问登录页面重登录页面获取登录接口, 先输入错误的账户密码去测试登录接口. 获取到登录的接口地址,请求方法是post请求,找到

python实战之利用pygame实现贪吃蛇游戏(一)

一.前言 之前尝试了自己用pygame写井字棋,这次玩的是贪吃蛇系列. 个人感觉模块可能会比较大,所以选择将函数和主要逻辑代码分在了两个文件中. fuc为函数模块,存储了事件感应和刷新界面等部分. main模块则是游戏的核心. 二.搭建界面 这里我就不重复了,可以先看一下这篇博客 其中界面的基本要素都有. main.py import pygame from fuc import * # 基本属性 lattice_wh = 20 #长宽 snake_color = (84, 255, 159)

python实战游戏之史上最难最虐的扫雷游戏没有之一

导语 每日游戏更新系列--今天带大家来看看扫雷小游戏! 它是许多人接触到的第一款游戏,大概也是广大办公族和无网学生无聊时消遣的最佳游戏. 在那些还没有网(被切断网)的岁月,扫雷曾陪伴无数人度过了他们的童年.你的最佳纪录是多少了? 对于许多90后.00后来说,扫雷这个电脑上自带的小游戏早就变成古早的历史,再一次提到扫雷这个名字的时候,对许多人来说,仿佛就是上世纪的事情了. ​ 就像是偶尔点开微信的跳一跳小游戏,发现排行榜上还有人在孤独的霸榜一样.已经2021年了,还有许多90后.00后坚守在扫雷这

Python实战练习之终于对肯德基下手

准备工作 查看肯德基官网的请求方法:post请求. X-Requested-With: XMLHttpRequest 判断得肯德基官网是ajax请求 通过这两个准备步骤,明确本次爬虫目标: ajax的post请求肯德基官网 获取上海肯德基地点前10页. 分析 获取上海肯德基地点前10页,那就需要先对每页的url进行分析. 第一页 # page1 # http://www.kfc.com.cn/kfccda/ashx/GetStoreList.ashx?op=cname # POST # cnam

Vue实战教程之仿肯德基宅急送App

Vue学习有一段时间了,就想着用Vue来写个项目练练手,弄了半个月,到今天为止也算勉强能看了. 由于不知道怎么拿手机App的接口,并且KFC电脑端官网真的...一言难尽,所以项目所有数据都是我截图然后写在EasyMock里的,有需要的同学可以自取 首页 商品页 外卖页 技术栈 vue + webpack + vuex + axios 文件目录 │ App.vue │ main.js │ ├─assets │ logo.png │ ├─components │ │ cartcontrol.vue

java Gui实现肯德基点餐收银系统

大家应该都去麦当劳或肯德基吃过快餐,参考肯德基官网的信息模拟肯德基快餐店的收银系统,简单的java Gui模拟的肯德基收银系统. 1.系统介绍 同学们应该都去麦当劳或肯德基吃过快餐吧?请同学们参考肯德基官网的信息模拟肯德基快餐店的收银系统,合理使用C++/python/Java,结合设计模式(2种以上)至少实现系统的以下功能: 1.正常餐品结算和找零. 2.基本套餐结算和找零. 3.使用优惠劵购买餐品结算和找零. 4.可在一定时间段参与店内活动(自行设计或参考官网信息). 5.模拟打印小票的功能

java实现肯德基收银系统

参考肯德基官网的信息模拟肯德基快餐店的收银系统,合理使用C++或Java或Python结合设计模式(2种以上)至少实现系统的以下功能: 1.正常餐品结算和找零. 2.基本套餐结算和找零. 3.使用优惠券购买餐品结算和找零. 4.可在一定时间段参与店内活动(自行设计或参考官网信息). 5.模拟打印小票的功能(写到文件中). 小票信息保存 class print{ String s=""; //存订单信息 } 食物工厂 interface FoodFactory{ public Hambu

python实战串口助手_解决8串口多个发送的问题

今晚终于解决了串口发送的问题,更改代码如下: def write(self, data): if self.alive: if self.serSer.isOpen(): self.serSer.write(data) def m_send1butOnButtonClick( self, event ): if self.ser.alive: send_data = '' send_data += str(self.m_textCtrl5.GetValue()) self.ser.write(s

Python实战小程序利用matplotlib模块画图代码分享

Python中的数据可视化 matplotlib 是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图.而且也可以方便地将它作为绘图控件. 实战小程序:画出y=x^3的散点图 样例代码如下: #coding=utf-8 import pylab as y #引入pylab模块 x = y.np.linspace(-10, 10, 100) #设置x横坐标范围和点数 y.plot(x, x*x*x,'or') #生成图像 ax = y.gca() a

python实战之实现excel读取、统计、写入的示例讲解

背景 图像领域内的一个国内会议快要召开了,要发各种邀请邮件,之后要录入.统计邮件回复(参会还是不参会等).如此重要的任务,老师就托付给我了.ps: 统计回复邮件的时候,能知道谁参会或谁不参会. 而我主要的任务,除了录入邮件回复,就是统计理事和普通会员的参会情况了(参会的.不参会的.没回复的).录入邮件回复信息没办法只能人工操作,但如果统计也要人工的话,那工作量就太大了(比如在上百人的列表中搜索另外上百人在不在此列表中!!),于是就想到了用python来帮忙,花两天时间不断修改,写了6个版本...

Java使用抽象工厂模式实现的肯德基消费案例详解

本文实例讲述了Java使用抽象工厂模式实现的肯德基消费案例.分享给大家供大家参考,具体如下: 一.模式定义 抽象工厂模式提供了一个接口,用于创建相关或者依赖对象的家族,而不需要指定具体实现类. 抽象工厂模式允许客户使用抽象接口来创建一组相关的产品,客户类和工厂类分开,客户需要任何产品的时候,只需要向工厂请求即可,客户无须修改就可以获得新产品. 二.模式举例 1 模式分析 我们借用爸爸和儿子到肯德基店消费这一场景来说明这一模式,进行抽象分析后的截图如下 2 抽象工厂模式的静态建模 3 代码示例 3

java实现可视化界面肯德基(KFC)点餐系统代码实例

一.题目 使用java实现可视化KFC点餐系统. 二.题目分析 根据java中的用户图形界面包中的各个类设计界面.利用JFrame提供最大的容器,然后设计各个面板,各个面板中添加所需要的组件,本程序中需要对按钮组件添加监听者,当按下按钮之后做出相应的相应. 对于程序运行显示的第一个界面由一个继承于JFrame的类run类在构造函数中设计并通过函数setVisible(true)显示在界面上,界面上有一个按钮"点餐饮",当此按钮按下时触发响应函数,进入点餐界面,然后通过点击点餐界面各食物

微软终于对网页三剑客下手了

Microsoft Expression Web Beta 1 betaDownload: http://fileforum.betanews.com/detail/Microsoft_Expression_Web/1147707644/1Microsoft Expression Web(以前叫Expression Web Designer) 可以帮助大家设计和制作基于web标准的网站.快速的进行CSS布局.对CSS进行格式化和管理.Rich data什么什么的, 还有可以对.NET 2.0进行

Python实战之制作天气查询软件

前言 本文主要给大家介绍的是关于Python制作天气查询软件,下面话不多说了,来一起看看详细的介绍吧 效果图 以前,给大家分享了如何使用 PyQt5 制作猜数游戏和计时器,这一次,我们继续学习:如何使用 PyQt5 制作天气查询软件. 源代码和 exe 文件: github 地址:https://github.com/xflywind/Python-Application 本地下载:http://xiazai.jb51.net/201905/yuanma/weather-python(jb51.