浅谈java实现背包算法(0-1背包问题)

0-1背包的问题

背包问题(Knapsack problem)是一种组合优化的NP完全问题。问题可以描述为:给定一组物品,每种物品都有自己的重量和价格,在限定的总重量内,我们如何选择,才能使得物品的总价格最高。问题的名称来源于如何选择最合适的物品放置于给定背包中。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程便是:

f[i][v]=max{ f[i-1][v], f[i-1][v-w[i]]+v[i] }。

public class Bag {

  static class Item {// 定义一个物品
    String id; // 物品id
    int size = 0;// 物品所占空间
    int value = 0;// 物品价值

    static Item newItem(String id, int size, int value) {
      Item item = new Item();
      item.id = id;
      item.size = size;
      item.value = value;
      return item;
    }

    public String toString() {
      return this.id;
    }
  }

  static class OkBag { // 定义一个打包方式
    List<Item> Items = new ArrayList<Item>();// 包里的物品集合

    OkBag() {
    }

    int getValue() {// 包中物品的总价值
      int value = 0;
      for (Item item : Items) {
        value += item.value;
      }
      return value;
    };

    int getSize() {// 包中物品的总大小
      int size = 0;
      for (Item item : Items) {
        size += item.size;
      }
      return size;
    };

    public String toString() {
      return String.valueOf(this.getValue()) + " ";
    }
  }

  // 可放入包中的备选物品
  static Item[] sourceItems = { Item.newItem("4号球", 4, 5), Item.newItem("5号球", 5, 6), Item.newItem("6号球", 6, 7) };
  static int bagSize = 10; // 包的空间
  static int itemCount = sourceItems.length; // 物品的数量

  // 保存各种情况下的最优打包方式 第一维度为物品数量从0到itemCount,第二维度为包裹大小从0到bagSize
  static OkBag[][] okBags = new OkBag[itemCount + 1][bagSize + 1];

  static void init() {
    for (int i = 0; i < bagSize + 1; i++) {
      okBags[0][i] = new OkBag();
    }

    for (int i = 0; i < itemCount + 1; i++) {
      okBags[i][0] = new OkBag();
    }
  }

  static void doBag() {
    init();
    for (int iItem = 1; iItem <= itemCount; iItem++) {
      for (int curBagSize = 1; curBagSize <= bagSize; curBagSize++) {
        okBags[iItem][curBagSize] = new OkBag();
        if (sourceItems[iItem - 1].size > curBagSize) {// 当前物品大于包空间.肯定不能放入包中.
          okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
        } else {
          int notIncludeValue = okBags[iItem - 1][curBagSize].getValue();// 不放当前物品包的价值
          int freeSize = curBagSize - sourceItems[iItem - 1].size;// 放当前物品包剩余空间
          int includeValue = sourceItems[iItem - 1].value + okBags[iItem - 1][freeSize].getValue();// 当前物品价值+放了当前物品后剩余包空间能放物品的价值
          if (notIncludeValue < includeValue) {// 放了价值更大就放入.
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][freeSize].Items);
            okBags[iItem][curBagSize].Items.add(sourceItems[iItem - 1]);
          } else {// 否则不放入当前物品
            okBags[iItem][curBagSize].Items.addAll(okBags[iItem - 1][curBagSize].Items);
          }
        }

      }
    }
  }

  public static void main(String[] args) {
    Bag.doBag();
    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包含的物品
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j].Items);
      }
      System.out.println("");
    }

    for (int i = 0; i < Bag.itemCount + 1; i++) {// 打印所有方案中包的总价值
      for (int j = 0; j < Bag.bagSize + 1; j++) {
        System.out.print(Bag.okBags[i][j]);
      }
      System.out.println("");
    }

    OkBag okBagResult = Bag.okBags[Bag.itemCount][Bag.bagSize];
    System.out.println("最终结果为:" + okBagResult.Items.toString() + okBagResult);

  }

}

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持我们。

(0)

相关推荐

  • Java基于循环递归回溯实现八皇后问题算法示例

    本文实例讲述了Java基于循环递归回溯实现八皇后问题.分享给大家供大家参考,具体如下: 运行效果图如下: 棋盘接口 /** * 棋盘接口 * @author Administrator * */ public interface Piece { abstract boolean isRow(int line); abstract boolean isCol(int line,int col); } 棋盘类: /** * 棋盘 * @author Administrator * */ public

  • java基于双向环形链表解决丢手帕问题的方法示例

    本文实例讲述了java基于双向环形链表解决丢手帕问题的方法.分享给大家供大家参考,具体如下: 问题:设编号为1.2--n的几个小孩围坐一圈,约定编号为k(1=<k<=n)的小孩从1开始报数,数到m的那个出列,他的下一位又从1开始报数,数到m的那个人又出列,直到所有人出列为止,由此产生一个出队编号的序列. 我们现在用一个双向环形链表来解这一问题.先来看看下面这幅图: 圆圈代表一个结点,红色的指针指向下一个元素,紫色的指针指向上一个元素.first指针指向第一个元素,表明第一个元素的位置,curs

  • Java采用循环链表结构求解约瑟夫问题

    本文实例讲述了Java采用循环链表结构求解约瑟夫问题的方法.分享给大家供大家参考.具体分析如下: 这是第一次java考试的试题,对于没看过链表的同学来说就不会做,现在回头看看,还真不难. 约瑟夫问题: 有n个人,其编号分别为1,2,3,-,n.这n个人按顺序排成一个圈.现在给定s和d,从第s个人开始从1依次报数,数到d的人出列,然后又从下一个人开始又从1开始依次报数,数到d的人又出列,如此循环,直到最后所有人出列为止.要求定义一个节点类,采用循环链表结构求解约瑟夫问题. 以下java版的答案:

  • java双向循环链表的实现代码

    例1: 复制代码 代码如下: package com.xlst.util; import java.util.HashMap;import java.util.Map;import java.util.UUID; /*** 双向循环链表* 完成时间:2012.9.28* 版本1.0* @author xlst**/public class BothwayLoopLinked {/*** 存放链表长度的 map* * 如果简单使用 static int 型的 size 基本类型变量,则只能维护一个

  • Java编程删除链表中重复的节点问题解决思路及源码分享

    一. 题目 在一个排序的链表中,存在重复的结点,请删除该链表中重复的结点,重复的结点不保留,返回链表头指针. 二. 例子 输入链表:1->2->3->3->4->4->5 处理后为:1->2->5 三. 思路 个人感觉这题关键是注意指针的指向,可以定义一个first对象(值为-1,主要用于返回操作后的链表),first.next指向head,定义一个last同样指向first(主要用于操作记录要删除节点的前一个节点),定义一个p指向head,指向当前节点.

  • Java语言中链表和双向链表

    链表是一种重要的数据结构,在程序设计中占有很重要的地位.C语言和C++语言中是用指针来实现链表结构的,由于Java语言不提供指针,所以有人认为在Java语言中不能实现链表,其实不然,Java语言比C和C++更容易实现链表结构.Java语言中的对象引用实际上是一个指针(本文中的指针均为概念上的意义,而非语言提供的数据类型),所以我们可以编写这样的类来实现链表中的结点. class Node { Object data; Node next;//指向下一个结点 } 将数据域定义成Object类是因为

  • java中使用双向链表实现贪吃蛇程序源码分享

    使用双向链表实现贪吃蛇程序 1.链表节点定义: package snake; public class SnakeNode { private int x; private int y; private SnakeNode next; private SnakeNode ahead; public SnakeNode() { } public SnakeNode(int x, int y) { super(); this.x = x; this.y = y; } public int getX(

  • java实现单链表、双向链表

    本文实例为大家分享了java实现单链表.双向链表的相关代码,供大家参考,具体内容如下 java实现单链表: package code; class Node { Node next; int data; public Node(int data) { this.data=data; } } class LinkList { Node first; //头部 public LinkList() { this.first=null; } public void addNode(Node no) {

  • Java递归算法经典实例(经典兔子问题)

    题目:古典问题:3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 分析:首先我们要明白题目的意思指的是每个月的兔子总对数:假设将兔子分为小中大三种,兔子从出生后三个月后每个月就会生出一对兔子, 那么我们假定第一个月的兔子为小兔子,第二个月为中兔子,第三个月之后就为大兔子,那么第一个月分别有1.0.0,第二个月分别为0.1.0, 第三个月分别为1.0.1,第四个月分别为,1.1.1,第五个月分别为2.1.2,第六个月分别为3.2.3,第

  • Java数据结构及算法实例:汉诺塔问题 Hanoi

    /** * 汉诺塔大学的时候就学过,但是根本没搞明白,唯一知道的就是要用递归的方法来求解. * 问题描述: * 有三根杆子A,B,C.A杆上有N个(N>1)穿孔圆盘,盘的尺寸由下到上依次变小. * 要求按下列规则将所有圆盘移至C杆: * 1.每次只能移动一个圆盘: * 2.大盘不能叠在小盘上面. * 提示:可将圆盘临时置于B杆,也可将从A杆移出的圆盘重新移回A杆, * 但都必须尊循上述两条规则. * 问:如何移?最少要移动多少次? * 解决方法: * 假设只有2个盘子,柱子分别是A, B, C柱

  • java数据结构之实现双向链表的示例

    复制代码 代码如下: /** * 双向链表的实现 * @author Skip * @version 1.0 */public class DoubleNodeList<T> { //节点类 private static class Node<T>{  Node<T> perv;  //前节点  Node<T> next;  //后节点  T data;    //数据 public Node(T t){   this.data = t;  } } priv

随机推荐

其他