python使用numpy中的size()函数实例用法详解

在python中,提到如何计算多维数组和矩阵,那一定会想到numpy。numpy定义了矩阵和数组,为它们提供了相关的运算。size中文解释为大家、尺寸的意思,如果想要统计矩阵元素个数,使用size()函数就可以解决。

1、Numpy size()函数

主要是用来统计矩阵元素个数,或矩阵某一维上的元素个数的函数。

2、使用语法

numpy.size(a, axis=None)

3、使用参数

a:输入的矩阵
axis:int型的可选参数,指定返回哪一维的元素个数。当没有指定时,返回整个矩阵的元素个数

4、使用说明

>>>
>>> a = np.array([[1,2,3],[4,5,6]])
>>> np.size(a)
6
>>> np.size(a,1)
3
>>> np.size(a,0)
2

如果传入的参数只有一个,则返回矩阵的元素个数;

如果传入的第二个参数是0,则返回矩阵的行数;

如果传入的第二个参数是1,则返回矩阵的列数。

5、具体使用实例

import numpy as np
X=np.array([[1,2,3,4],
       [5,6,7,8],
       [9,10,11,12]])
number=X.size # 计算 X 中所有元素的个数
X_row=np.size(X,0) #计算 X 的行数
X_col=np.size(X,1) #计算 X 的列数
print("number:",number)
print("X_row:",X_row)
print("X_col:",X_col)
<<
number: 12
X_row: 3
X_col: 4

到此这篇关于python使用numpy中的size()函数实例用法详解的文章就介绍到这了,更多相关python如何使用numpy中的size()函数内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2021-01-28

python 函数中的内置函数及用法详解

今天来介绍一下Python解释器包含的一系列的内置函数,下面表格按字母顺序列出了内置函数: 下面就一一介绍一下内置函数的用法: 1.abs() 返回一个数值的绝对值,可以是整数或浮点数等. print(abs(-18)) print(abs(0.15)) result: 18 0.15 2.all(iterable) 如果iterable的所有元素不为0.''.False或者iterable为空,all(iterable)返回True,否则返回False. print(all(['a','b',

对python中assert、isinstance的用法详解

1. assert 函数说明: Assert statements are a convenient way to insert debugging assertions into a program: assert语句是一种插入调试断点到程序的一种便捷的方式. 使用范例: assert 3 == 3 assert 1 == True assert (4 == 4) print('-----------') assert (3 == 4) ''' 抛出AssertionError异常,后面程序不

Java回调函数实例代码详解

首先说说什么叫回调函数? 在WINDOWS中,程序员想让系统DLL调用自己编写的一个方法,于是利用DLL当中回调函数(CALLBACK)的接口来编写程序,使它调用,这个就 称为回调.在调用接口时,需要严格的按照定义的参数和方法调用,并且需要处理函数的异步,否则会导致程序的崩溃. 这样的解释似乎还是比较难懂,这里举个简 单的例子: 程序员A写了一段程序(程序a),其中预留有回调函数接口,并封装好了该程序.程序员B要让a调用自己的程序b中的一个方法,于是,他通过a中的接口回调自己b中的方法.目的达到

Python中index()和seek()的用法(详解)

1.index() 一般用处是在序列中检索参数并返回第一次出现的索引,没找到就会报错,比如: >>> t=tuple('Allen') >>> t ('A', 'l', 'l', 'e', 'n') >>> t.index('a') Traceback (most recent call last): File "<pyshell#2>", line 1, in <module> t.index('a') V

对numpy中array和asarray的区别详解

array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: import numpy as np #example 1: data1=[[1,1,1],[1,1,1],[1,1,1]] arr2=np.array(data1) arr3=np.asarray(data1) data1[1][1]=2 print 'data1:\n',data1 print 'ar

在Python3 numpy中mean和average的区别详解

mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的.指定权重后,average可以计算一维的加权平均值. 具体如下: import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n', a) print('mean函数'.center(20, '*')) print('对所有数据计算\n', a.mean(

对python过滤器和lambda函数的用法详解

1. 过滤器 Python 具有通过列表解析 将列表映射到其它列表的强大能力.这种能力同过滤机制结合使用,使列表中的有些元素被映射的同时跳过另外一些元素. 过滤列表语法: [ mapping-expression for element in source-list if filter-expression ] 这是列表解析的扩展,前三部分都是相同的,最后一部分,以 if开头的是过滤器表达式.过滤器表达式可以是返回值为真或者假的任何表达式 (在 Python 中是几乎任何东西).任何经过滤器表达

python高级特性和高阶函数及使用详解

python高级特性 1.集合的推导式 •列表推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:[exp for item in collection if codition] if codition - 可选 •字典推导式,使用一句表达式构造一个新列表,可包含过滤.转换等操作. 语法:{key_exp:value_exp for item in collection if codition} •集合推导式 语法:{exp for item in collection if

对numpy中的where方法嵌套使用详解

如同for循环一样,numpy中的where方法可以实现嵌套功能.这是简化嵌套式矩阵逻辑的一个很好的方法. 假设有一个矩阵,需要把小于0的元素改成-1,大于0的元素改成1,而等于0的时候不做修改. 那么,对应的代码示范如下: #!/usr/bin/python import numpy as np data = np.random.randn(4,5) data1 =np.where(data > 0,1, np.where(data <0,-1,0)) print("dataval

关于numpy中eye和identity的区别详解

两个函数的原型为: np.identity(n, dtype=None) np.eye(N, M=None, k=0, dtype=<type 'float'>): np.identity只能创建方形矩阵 np.eye可以创建矩形矩阵,且k值可以调节,为1的对角线的位置偏离度,0居中,1向上偏离1,2偏离2,以此类推,-1向下偏离.值绝对值过大就偏离出去了,整个矩阵就全是0了. 以上这篇关于numpy中eye和identity的区别详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希