Python中np.random.randint()参数详解及用法实例

目录
  • 可实现功能:
  • np.random.randint() 根据参数中所指定的范围生成随机 整数。
  • 参数
  • 一、基础用法
  • 二、高级用法
  • 总结

可实现功能:

1.随机生成一个整数。

2.随机生成任意范围内的一个整数。

3.随机生成指定长度的整数组

4.随机生成指定长度的任意范围的整数组

5.随机生成指定长度的多维整数组

6.随机生成指定长度的任意范围的多维整数组

np.random.randint() 根据参数中所指定的范围生成随机 整数。

numpy.random.randint(low, high=None, size=None, dtype=int)

参数

1. low: int 生成的数值的最小值(包含),默认为0,可省略。

2. high: int 生成的数值的最打值(不包含)。

3. size: int or tuple of ints 随机数的尺寸, 默认是返回单个,输入 10 返回 10个,输入 (3,4) 返回的是一个 3*4 的二维数组。(可选)。

4. dtype:想要输出的结果类型。默认值为int。(可选,一般用不上)。

一、基础用法

可执行代码

import pandas as pd
import numpy as np

# 随机返回 0-9 的 一个整数,可的省略0
np.random.randint(10)
# 随机返回 10-20 的 一个整数
np.random.randint(10,21)

# 随机返回范围在 0-9 的,长度为 10 的数组
np.random.randint(10,size=10)
# 随机返回范围在 10-20 的,长度为 10 的数组
np.random.randint(10,21,size=10)

# 随机返回范围在 0-9 的 3*4 随机数组
np.random.randint(10,size=(3,4))
# 随机返回范围在 10-20 的 3*4 随机数组
np.random.randint(10,21,size=(3,4))

二、高级用法

可执行代码

import pandas as pd
import numpy as np

# 高级用法
# 可单独指定每个元素的最大值
# 生成 3 个最大值分别为 3,5,7 的值,最大值不超过 10 的值
# 如果不指定 size 默认根据第一个和第二个参数的长度来决定生成结果的长度,此处返回的 array 长度是3
np.random.randint([3, 5, 7], 10)

# 高级用法
# 生成 3 个最小值为1,最大值分别不超过 3,5,10 的值
np.random.randint(1, [3, 5, 10])
# 高级用法
# 生成 3 个最小值为1,最大值分别不超过 3,5,10 的值
np.random.randint([1, 2, 3,], [4, 5, 10])

# 高级用法
# 生成 4*2 数组 最小值为[1, 3, 5, 7],最大值 第一行不超过10,第二行不超过 20
# 注意第二个参数里面的每个元素都要用[],因为它控制的是一整行
np.random.randint([1, 3, 5, 7], [[10], [20]])

# 高级用法
# 指定返回数据的 dtype
# 随机返回 10-20 的 长度为 10  dtype=np.uint8 的数组
np.random.randint(10, 21, size=10, dtype=np.uint8)

总结

到此这篇关于Python中np.random.randint()参数详解及用法的文章就介绍到这了,更多相关Python np.random.randint()用法内容请搜索我们以前的文章或继续浏览下面的相关文章希望大家以后多多支持我们!

时间: 2022-09-20

Numpy中np.random.rand()和np.random.randn() 用法和区别详解

numpy.random.rand(d0, d1, -, dn)的随机样本位于[0, 1)中:本函数可以返回一个或一组服从**"0~1"均匀分布**的随机样本值. numpy.random.randn(d0, d1, -, dn)是从标准正态分布中返回一个或多个样本值. 1. np.random.rand() 语法: np.random.rand(d0,d1,d2--dn) 注:使用方法与np.random.randn()函数相同 作用: 通过本函数可以返回一个或一组服从"0

np.random.seed() 的使用详解

在学习人工智能时,大量的使用了np.random.seed(),利用随机数种子,使得每次生成的随机数相同. 我们带着2个问题来进行下列实验 np.random.seed()是否一直有效 np.random.seed(Argument)的参数作用? 例子1 import numpy as np if __name__ == '__main__': i = 0 while (i < 6): if (i < 3): np.random.seed(0) print(np.random.randn(1,

从np.random.normal()到正态分布的拟合操作

先看伟大的高斯分布(Gaussian Distribution)的概率密度函数(probability density function): 对应于numpy中: numpy.random.normal(loc=0.0, scale=1.0, size=None) 参数的意义为: loc:float 此概率分布的均值(对应着整个分布的中心centre) scale:float 此概率分布的标准差(对应于分布的宽度,scale越大越矮胖,scale越小,越瘦高) size:int or tuple

Python中的np.random.seed()随机数种子问题及解决方法

目录 1. 何为随机数种子 2. np.random.seed()参数问题 3. 使用方法 4. 随机数种子问题总结 前言: 最近在学习过程中总是遇到np.random.seed()这个问题,刚开始总是觉得不过是一个简单的随机数种子,就没太在意,后来遇到的次数多了,才发现他竟然是如此之用处之大!接下来我就把我所学到的关于np.random.seed()的知识分享给大家! 1. 何为随机数种子 随机数种子,相当于我给接下来需要生成的随机数一个初值,按照我给的这个初值,按固定顺序生成随机数.读到这,

python numpy之np.random的随机数函数使用介绍

np.random的随机数函数(1) 函数 说明 rand(d0,d1,..,dn) 根据d0‐dn创建随机数数组,浮点数, [0,1),均匀分布 randn(d0,d1,..,dn) 根据d0‐dn创建随机数数组,标准正态分布 randint(low[,high,shape]) 根据shape创建随机整数或整数数组,范围是[low, high) seed(s) 随机数种子, s是给定的种子值 np.random.rand import numpy as np a = np.random.ran

python numpy库np.percentile用法说明

在python中计算一个多维数组的任意百分比分位数,此处的百分位是从小到大排列,只需用np.percentile即可-- a = range(1,101) #求取a数列第90%分位的数值 np.percentile(a, 90) Out[5]: 90.10000000000001 a = range(101,1,-1) #百分位是从小到大排列 np.percentile(a, 90) Out[7]: 91.10000000000001 详看官方文档 numpy.percentile Parame

C/C++产生随机数函数简单介绍

计算机的随机数都是由伪随机数,即是由小M多项式序列生成的,其中产生每个小序列都有一个初始值,即随机种子.(注意: 小M多项式序列的周期是65535,即每次利用一个随机种子生成的随机数的周期是65535,当你取得65535个随机数后它们又重复出现了.) 我们知道rand()函数可以用来产生随机数,但是这不是真正意义上的随机数,是一个伪随机数,是根据一个数(我们可以称它为种子)为基准以某个递推公式推算出来的一系列数,当这系列数很大的时候,就符合正态公布,从而相当于产生了随机数,但这不是真正的随机数,

详解Python基础random模块随机数的生成

随机数参与的应用场景大家一定不会陌生,比如密码加盐时会在原密码上关联一串随机数,蒙特卡洛算法会通过随机数采样等等.Python内置的random模块提供了生成随机数的方法,使用这些方法时需要导入random模块. import random 下面介绍下Python内置的random模块的几种生成随机数的方法. 1.random.random() 随机生成 0 到 1 之间的浮点数[0.0, 1.0) . print("random: ", random.random()) #rando

python numpy 常用随机数的产生方法的实现

numpy 中 的random模块有多个函数用于生成不同类型的随机数,常见的有 uniform.rand.random.randint.random_interges 下面介绍一下各自的用法 1.np.random.uniform的用法 np.random.uniform(low=0.0, high=1.0, size=None) 作用:可以生成[low,high)中的随机数,可以是单个值,也可以是一维数组,也可以是多维数组 参数介绍: low :float型,或者是数组类型的,默认为0 hig

python 3.74 运行import numpy as np 报错lib\site-packages\numpy\__init__.py

安装完 anaconda 运行如下代码执行不了 import numpy as np import os,sys #获取当前文件夹,并根据文件名 def path(fileName): p=sys.path[0]+'\\'+fileName return p #读文件 def readFile(fileName): f=open(path(fileName)) str=f.read() f.close() return str #写文件 def writeFile(fileName,str):

Python随机数函数代码实例解析

这篇文章主要介绍了Python随机数函数代码实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 ''' choice(seq) 从序列的元素中随机选出一个元素 randrange ([start,] stop [,step]) 从指定范围内,在指定步长递增的集合中 获取一个随机数,步长默认为 1 .注:不包含 stop 值 random() 随机生成下一个实数,它在[0,1)范围内. shuffle(lst) 将序列的所有元素随机排序,返回

python 的numpy库中的mean()函数用法介绍

1. mean() 函数定义: numpy.mean(a, axis=None, dtype=None, out=None, keepdims=<class numpy._globals._NoValue at 0x40b6a26c>)[source] Compute the arithmetic mean along the specified axis. Returns the average of the array elements. The average is taken over

python中numpy.zeros(np.zeros)的使用方法

翻译: 用法:zeros(shape, dtype=float, order='C') 返回:返回来一个给定形状和类型的用0填充的数组: 参数:shape:形状 dtype:数据类型,可选参数,默认numpy.float64 dtype类型: t ,位域,如t4代表4位 b,布尔值,true or false i,整数,如i8(64位) u,无符号整数,u8(64位) f,浮点数,f8(64位) c,浮点负数, o,对象, s,a,字符串,s24 u,unicode,u24 order:可选参数

javascript Math.random()随机数函数

random函数语法 Math.random(); random函数参数 无参数 random函数返回值 返回0和1之间的伪随机数,可能为0,但总是小于1,[0,1) random函数示例 document.write(Math.random()); 返回随机数 document.write(Math.random()*(20-10)+10); 返回10-20的随机数 document.write(Math.random()*(n-m)+m); 返回指定范围的随机数(m-n之间)的公式