c#集合快速排序类实现代码分享

说明:

1、集合类型参数化;

2、可根据集合中的对象的各个属性进行排序,传入属性名称即可;

注:属性必须实现了IComparable接口,C#中int、datetime、string等基本类型都已经实现了IComparable接口。

代码如下:

/// <summary>
    /// 对集合进行排序,如
    /// List<User> users=new List<User>(){.......}
    /// ListSorter.SortList<list<User>,User>(ref users,"Name",SortDirection.Ascending);
    /// </summary>
    public class ListSorter
    {
        public static void SortList<TCollection, TItem>(ref TCollection list, string property, SortDirection direction) where TCollection : IList<TItem>
        {
            PropertyInfo[] propertyinfos = typeof(TItem).GetProperties();
            foreach (PropertyInfo propertyinfo in propertyinfos)
            {
                if (propertyinfo.Name == property)          //取得指定的排序属性
             // http://www.cnblogs.com/sosoft/
                {
                    QuickSort<TCollection, TItem>(ref list, 0, list.Count - 1, propertyinfo, direction);
                }
            }
        }
        /// <summary>
        /// 快速排序算法
        /// </summary>
        /// <typeparam name="TCollection">集合类型,需要实现Ilist<T>集合</typeparam>
        /// <typeparam name="TItem">集合中对象的类型</typeparam>
        /// <param name="list">集合对象</param>
        /// <param name="left">起始位置,从0开始</param>
        /// <param name="right">终止位置</param>
        /// <param name="propertyinfo">集合中对象的属性,属性必须要实现IComparable接口</param>
        /// <param name="direction">排序类型(升序或降序)</param>
        private static void QuickSort<TCollection, TItem>(ref TCollection list, int left, int right, PropertyInfo propertyinfo, SortDirection direction) where TCollection : IList<TItem>
        {
            if (left < right)
            {
                int i = left, j = right;
                TItem key = list[left];
                while (i < j)
                {
                    if (direction == SortDirection.Ascending)
                    {
                        while (i < j && ((IComparable)propertyinfo.GetValue(key, null)).CompareTo((IComparable)propertyinfo.GetValue(list[j], null)) < 0)
                        {
                            j--;
                        }
                        if (i < j)
                        {
                            list[i] = list[j];
                            i++;
                        }

while (i < j && ((IComparable)propertyinfo.GetValue(key, null)).CompareTo((IComparable)propertyinfo.GetValue(list[i], null)) > 0)
                        {
                            i++;
                        }
                        if (i < j)
                        {
                            list[j] = list[i];
                            j--;
                        }
                        list[i] = key;
                    }
                    else
                    {
                        while (i < j && ((IComparable)propertyinfo.GetValue(key, null)).CompareTo((IComparable)propertyinfo.GetValue(list[j], null)) > 0)
                        {
                            j--;
                        }
                        if (i < j)
                        {
                            list[i] = list[j];
                            i++;
                        }

while (i < j && ((IComparable)propertyinfo.GetValue(key, null)).CompareTo((IComparable)propertyinfo.GetValue(list[i], null)) < 0)
                        {
                            i++;
                        }
                        if (i < j)
                        {
                            list[j] = list[i];
                            j--;
                        }
                        list[i] = key;
                    }
                }
                //执行递归调用
                QuickSort<TCollection, TItem>(ref list, left, i - 1, propertyinfo, direction);
                QuickSort<TCollection, TItem>(ref list, i + 1, right, propertyinfo, direction);
            }
        }
    }
    /// <summary>
    /// 排序类型
    /// </summary>
    public enum SortDirection
    {
        Ascending,
        Descending
    }

(0)

相关推荐

  • 逐步讲解快速排序算法及C#版的实现示例

    算法思想 快速排序是C.R.A.Hoare于1962年提出的一种划分交换排序.它采用了一种分治的策略,通常称其为分治法(Divide-and-ConquerMethod). 该方法的基本思想是: 1.先从数列中取出一个数作为基准数. 2.分区过程,将比这个数大的数全放到它的右边,小于或等于它的数全放到它的左边. 3.再对左右区间重复第二步,直到各区间只有一个数. 虽然快速排序称为分治法,但分治法这三个字显然无法很好的概括快速排序的全部步骤.因此我的对快速排序作了进一步的说明:挖坑填数+分治法:

  • C#排序算法之快速排序

    快速排序实现: 复制代码 代码如下: namespace QuickSort { class QuickSort { public static void Sort(int[] array) { DoSort(array,0, array.Length-1); } private static void DoSort( int[] array, int start, int end) { if( start < end) { int temp = Partition(array, start,

  • C#快速排序算法实例分析

    本文实例讲述了C#快速排序算法.分享给大家供大家参考.具体实现方法如下: public static int[] QuickSort(int[] arr) { if (arr.Length <= 1) return arr; int pivot = arr.Length - 1; int[] less = GetLessThanEqualToPivot(arr, pivot); int[] greater = GetGreaterThanPivot(arr, pivot); return Con

  • C#中使用快速排序按文件创建时间将文件排序的源码

    快速排序类 using System; using System.Data; using System.Configuration; using System.Web; using System.Web.Security; using System.Web.UI; using System.Web.UI.WebControls; using System.Web.UI.WebControls.WebParts; using System.Web.UI.HtmlControls; using Sy

  • C#使用委托实现的快速排序算法实例

    本文实例讲述了C#使用委托实现的快速排序算法.分享给大家供大家参考.具体如下: class QuickSort { private delegate int CmpOp(object Left, object Right); private void swap(object[] Array, int Left, int Right, CmpOp Cmp) { object tempObj = Array[Left]; Array[Left] = Array[Right]; Array[Right

  • c# 快速排序算法

    快速排序使用分治法(Divide and conquer)策略来把一个串行(list)分为两个子串行(sub-lists). 步骤为: 1.从数列中挑出一个元素,称为 "基准"(pivot), 2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边).在这个分区退出之后,该基准就处于数列的中间位置.这个称为分区(partition)操作. 3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序. 递归

  • c#集合快速排序类实现代码分享

    说明: 1.集合类型参数化: 2.可根据集合中的对象的各个属性进行排序,传入属性名称即可: 注:属性必须实现了IComparable接口,C#中int.datetime.string等基本类型都已经实现了IComparable接口. 复制代码 代码如下: /// <summary>    /// 对集合进行排序,如    /// List<User> users=new List<User>(){.......}    /// ListSorter.SortList&l

  • Java编程枚举类实战代码分享

    本文句句走心,希望老铁们用心阅读并实战,一定会有收获的. 摘要:本文主要讨论生产环境中枚举类的使用.首先会通过对枚举类概念进行简单的介绍,引入我们讨论的主题:然后就直接进入实战部分,本文只会介绍在实战中用的比较多,也比较常用的情况,所以希望老铁可以用心体会并实践,最终化为己有:最后会大致在对枚举的 API 做了一个简单的介绍.其余没有介绍的内容,基本上在我们的生产环境中极少用到,如果有兴趣的可以自己在深入研究. 枚举 概念:枚举类型是 Java 5 中新增特性的一部分,它是一种特殊的数据类型,它

  • java date类与string类实例代码分享

    Date类用来指定日期和时间,其构造函数及常用方法如下: publicDate() 从当前时间构造日期时间对象. publicStringtoString() 转换成字符串. publiclonggetTime() 返回自新世纪以来的毫秒数,可以用于时间计算. [例3.10]测试执行循环花费的时间(数量级为毫秒),具体时间情况如图3.9所示.源程序代码如下: //程序文件名为UseDate.java import java.util.Date; public class UseDate { pu

  • c语言快速排序算法示例代码分享

    步骤为:1.从数列中挑出一个元素,称为 "基准"(pivot);2.重新排序数列,所有元素比基准值小的摆放在基准前面,所有元素比基准值大的摆在基准的后面(相同的数可以到任一边).在这个分区退出之后,该基准就处于数列的中间位置.这个称为分区(partition)操作.3.递归地(recursive)把小于基准值元素的子数列和大于基准值元素的子数列排序.递归的最底部情形,是数列的大小是零或一,也就是永远都已经被排序好了.虽然一直递归下去,但是这个算法总会退出,因为在每次的迭代(iterat

  • Asp.Net类型转换类(通用类)代码分享

    废话不多说了,直接给大家贴代码了,具体代码如下所述: /// <summary> /// 类型转换类 /// 处理数据库获取字段为空的情况 /// </summary> public static class DBConvert { #region------------------ToInt32类型转换------------------ /// <summary> /// 读取数据库中字符串并转换成Int32 /// 为空时返回0 /// </summary&

  • 好用的AJAX类代码分享

    ajax.js -------------------------[ajax类]-------------------------- 复制代码 代码如下: function Ajax(recvType){ var aj=new Object(); aj.recvType=recvType ? recvType.toUpperCase() : 'HTML'; //向形参中传递的文件类型 aj.targetUrl=''; aj.sendString=''; aj.resultHandle=null;

  • 在Python web中实现验证码图片代码分享

    系统版本: CentOS 7.4 Python版本: Python 3.6.1 在现在的WEB中,为了防止爬虫类程序提交表单,图片验证码是最常见也是最简单的应对方法之一. 1.验证码图片的生成   在python中,图片验证码一般用PIL或者Pillow库实现,下面就是利用Pillow生成图片验证码的代码: #!/usr/bin/env python3 #- * -coding: utf - 8 - * -#@Author: Yang#@ Time: 2017 / 11 / 06 1: 04 i

  • Java反射机制实例代码分享

    本文旨在对Java反射机制有一个全面的介绍,希望通过本文,大家会对Java反射的相关内容有一个全面的了解. 阅读本文之前,大家可先行参阅<重新理解Java泛型>. 前言 Java反射机制是一个非常强大的功能,在很多大型项目比如Spring, Mybatis都可以看见反射的身影.通过反射机制我们可以在运行期间获取对象的类型信息,利用这一特性我们可以实现工厂模式和代理模式等设计模式,同时也可以解决Java泛型擦除等令人苦恼的问题.本文我们就从实际应用的角度出发,来应用一下Java的反射机制. 反射

  • K-近邻算法的python实现代码分享

    k-近邻算法概述: 所谓k-近邻算法KNN就是K-Nearest neighbors Algorithms的简称,它采用测量不同特征值之间的距离方法进行分类 用官方的话来说,所谓K近邻算法,即是给定一个训练数据集,对新的输入实例,在训练数据集中找到与该实例最邻近的K个实例(也就是上面所说的K个邻居), 这K个实例的多数属于某个类,就把该输入实例分类到这个类中. k-近邻算法分析 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用数据范围:数值型和标称型 k-

  • Java实现TFIDF算法代码分享

    算法介绍 概念 TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与资讯探勘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或一个语料库中的其中一份文件的重要程度.字词的重要性随着它在文件中出现的次数成正比增加,但同时会随着它在语料库中出现的频率成反比下降.TF-IDF加权的各种形式常被搜寻引擎应用,作为文件与用户查询之间相关程度的度量或评级.除了TF-IDF以外,因特网上的搜寻引擎还会使用基于连结分析的评

随机推荐