Python 执行矩阵与线性代数运算

问题

你需要执行矩阵和线性代数运算,比如矩阵乘法、寻找行列式、求解线性方程组等等。

解决方案

NumPy 库有一个矩阵对象可以用来解决这个问题。
矩阵类似于3.9小节中数组对象,但是遵循线性代数的计算规则。下面的一个例子展示了矩阵的一些基本特性:

>>> import numpy as np
>>> m = np.matrix([[1,-2,3],[0,4,5],[7,8,-9]])
>>> m
matrix([[ 1, -2, 3],
    [ 0, 4, 5],
    [ 7, 8, -9]])

>>> # Return transpose
>>> m.T
matrix([[ 1, 0, 7],
    [-2, 4, 8],
    [ 3, 5, -9]])

>>> # Return inverse
>>> m.I
matrix([[ 0.33043478, -0.02608696, 0.09565217],
    [-0.15217391, 0.13043478, 0.02173913],
    [ 0.12173913, 0.09565217, -0.0173913 ]])

>>> # Create a vector and multiply
>>> v = np.matrix([[2],[3],[4]])
>>> v
matrix([[2],
    [3],
    [4]])
>>> m * v
matrix([[ 8],
    [32],
    [ 2]])
>>>

可以在 numpy.linalg 子包中找到更多的操作函数,比如:

>>> import numpy.linalg

>>> # Determinant
>>> numpy.linalg.det(m)
-229.99999999999983

>>> # Eigenvalues
>>> numpy.linalg.eigvals(m)
array([-13.11474312, 2.75956154, 6.35518158])

>>> # Solve for x in mx = v
>>> x = numpy.linalg.solve(m, v)
>>> x
matrix([[ 0.96521739],
    [ 0.17391304],
    [ 0.46086957]])
>>> m * x
matrix([[ 2.],
    [ 3.],
    [ 4.]])
>>> v
matrix([[2],
    [3],
    [4]])
>>>

讨论

很显然线性代数是个非常大的主题,已经超出了本书能讨论的范围。 但是,如果你需要操作数组和向量的话, NumPy 是一个不错的入口点。 可以访问 NumPy 官网 http://www.numpy.org 获取更多信息。

以上就是Python 执行矩阵与线性代数运算的详细内容,更多关于Python 矩阵与线性代数运算的资料请关注我们其它相关文章!

时间: 2020-07-29

python如何进行矩阵运算

python进行矩阵运算的方法: 1.矩阵相乘 >>>a1=mat([1,2]); >>>a2=mat([[1],[2]]); >>>a3=a1*a2 #1*2的矩阵乘以2*1的矩阵,得到1*1的矩阵 >>> a3 matrix([[5]]) 2.矩阵对应元素相乘 >>>a1=mat([1,1]); >>>a2=mat([2,2]); >>>a3=multiply(a1,a2) &

python的常见矩阵运算(小结)

python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 1.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 2.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=mat(a1); 创建常见的矩阵 data1=mat(zeros((3,3)));

python矩阵运算,转置,逆运算,共轭矩阵实例

我就废话不多说了,大家还是直接看代码吧! #先定义两个矩阵 X=np.array([[1,2104,5,1,45],[1,1416,3,2,40],[1,1534,3,2,30],[1,852,2,1,36]]) y=np.array([45,40,30,36]) #内积以后发现 c=np.dot(X.T,X) c array([[ 4, 5906, 13, 6, 151], [ 5906, 9510932, 21074, 8856, 228012], [ 13, 21074, 47, 19,

Python numpy矩阵处理运算工具用法汇总

numpy是用于处理矩阵运算非常好的工具.执行效率高,因为其底层是用的是C语句 使用numpy,需要将数据转换成numpy能识别的矩阵格式. 基本用法: numpy.array(object, dtype = None, copy = True, order = None, subok = False, ndmin = 0) 名称描述 object数组或嵌套的数列 dtype数组元素的数据类型,可选,例如:int64,int16,int32,float64等,位数越高,精度越高,但也更耗内存.

Python矩阵常见运算操作实例总结

本文实例讲述了Python矩阵常见运算操作.分享给大家供大家参考,具体如下: python的numpy库提供矩阵运算的功能,因此我们在需要矩阵运算的时候,需要导入numpy的包. 一.numpy的导入和使用 from numpy import *;#导入numpy的库函数 import numpy as np; #这个方式使用numpy的函数时,需要以np.开头. 二.矩阵的创建 由一维或二维数据创建矩阵 from numpy import *; a1=array([1,2,3]); a1=ma

Python中矩阵创建和矩阵运算方法

矩阵创建 1.from numpyimport *; a1=array([1,2,3]) a2=mat(a1) 矩阵与方块列表的区别如下: 2.data2=mat(ones((2,4))) 创建一个2*4的1矩阵,默认是浮点型的数据,如果需要时int类型,可以使用dtype=int 3.data5=mat(random.randint(2,8,size=(2,5)) 产生一个2-8之间的随机整数矩阵 4.data3=mat(random.rand(2,2)) 这里的random模块使用的是num

Python常用库Numpy进行矩阵运算详解

Numpy支持大量的维度数组和矩阵运算,对数组运算提供了大量的数学函数库! Numpy比Python列表更具优势,其中一个优势便是速度.在对大型数组执行操作时,Numpy的速度比Python列表的速度快了好几百.因为Numpy数组本身能节省内存,并且Numpy在执行算术.统计和线性代数运算时采用了优化算法. Numpy的另一个强大功能是具有可以表示向量和矩阵的多维数组数据结构.Numpy对矩阵运算进行了优化,使我们能够高效地执行线性代数运算,使其非常适合解决机器学习问题. 与Python列表相比

Python操作多维数组输出和矩阵运算示例

本文实例讲述了Python操作多维数组输出和矩阵运算.分享给大家供大家参考,具体如下: 在许多编程语言中(Java,COBOL,BASIC),多维数组或者矩阵是(限定各维度的大小)预先定义好的.而在Python中,其实现更简单一些. 如果需要处理更加复杂的情形,可能需要使用Python的数学模块包NumPy,链接地址:http://numpy.sourceforge.net/ 首先来看一个简单的二维表格.投掷两枚骰子时,有36种可能的结果.我们可以将其制成一个二维表格,行和列分别代表一枚骰子的得

Python实现二维数组输出为图片

对于二维数组,img_mask [[ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] [ 0 0 0 ..., 7 7 7] ..., [266 266 266 ..., 253 253 253] [266 266 266 ..., 253 253 253] [266 266 266 ..., 253 253 253]] 显示为图片的代码为: import matplotlib.pyplot as pyplot pyplot.imshow(im_mask) 以上这篇P

Python输入二维数组方法

前不久对于Python输入二维数组有些不解,今日成功尝试,记以备忘.这里以输入1-9,3*3矩阵为例 n=int(input()) line=[[0]*n]*n for i in range(n): line[i]=input().split(' ') print(line) 使用数据转换为int即可! 以上这篇Python输入二维数组方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们. 您可能感兴趣的文章: 一些Python中的二维数组的操作方法 python中字

python 去除二维数组/二维列表中的重复行方法

之前提到去除一维数组中的重复元素用unique()函数,如果要去除二维数组中的重复行该怎么操作呢? import numpy as np arr = np.array([[1, 2],[3, 4],[5, 6],[7, 8],[3, 4],[1, 2]]) print(np.array(list(set([tuple(t) for t in arr])))) 输出: [[1 2] [3 4] [5 6] [7 8]] 如果是二维列表,列表中每个元素还是列表 list2=list(set([tup

Python创建二维数组实例(关于list的一个小坑)

0.目录 1.遇到的问题 2.创建二维数组的办法 •3.1 直接创建法 •3.2 列表生成式法 •3.3 使用模块numpy创建 1.遇到的问题 今天写Python代码的时候遇到了一个大坑,差点就耽误我交作业了... 问题是这样的,我需要创建一个二维数组,如下: m = n = 3 test = [[0] * m] * n print("test =", test) 输出结果如下: test = [[0, 0, 0], [0, 0, 0], [0, 0, 0]] 是不是看起来没有一点问

Python实现二维数组按照某行或列排序的方法【numpy lexsort】

本文实例讲述了Python实现二维数组按照某行或列排序的方法.分享给大家供大家参考,具体如下: lexsort支持对数组按指定行或列的顺序排序:是间接排序,lexsort不修改原数组,返回索引. (对应lexsort 一维数组的是argsort a.argsort()这么使用就可以:argsort也不修改原数组, 返回索引) 默认按最后一行元素有小到大排序, 返回最后一行元素排序后索引所在位置. 设数组a, 返回的索引ind,ind返回的是一维数组 对于一维数组, a[ind]就是排序后的数组.

python实现二维数组的对角线遍历

本文实例为大家分享了python实现二维数组的对角线遍历,供大家参考,具体内容如下 第一种情况:从左上角出发,右下角结束 要完成的事情,就像下图: 话不多说,直接上Python实现代码与结果展示: # 输出遍历的索引与其对应的值 A = [[1,2,3], [4,5,6], [7,8,9]] n = len(A) for i in range(n+n-1): for j in range(i+1): k = i-j if k<n and k>=0 and j<n: print("

Python获取二维数组的行列数的2种方法

这篇文章主要介绍了Python获取二维数组的行列数的2种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 import numpy as np x = np.array([[1,2,5],[2,3,5],[3,4,5],[2,3,6]]) # 输出数组的行和列数 print x.shape # (4, 3) # 只输出行数 print x.shape[0] # 4 # 只输出列数 print x.shape[1] # 3 或者 In [48]

python统计多维数组的行数和列数实例

python菜鸟,每天都要进步一点点. 二维元组的例子: A = ((1, 1, 1), (1, 1, 1),(1, 1, 1),(0, 0, 0)) print len(A) # 4, print len(A[0]) # 3 同样的如果是多维,每一维长度应该是 len(A[i]) 以上这篇python统计多维数组的行数和列数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持我们.

python操作excel文件并输出txt文件的实例

如下所示: #coding=utf-8 import os import xlrd #excel文件放置在当前路径 path='model.xls' #打开文件 data=xlrd.open_workbook(path) #查询工作表 sheets=data.sheets() #可以通过函数.索引.名称获得工作表. # sheet_1_by_function=data.sheets()[0] # sheet_1_by_index=data.sheet_by_index(0) sheet_1_by