详解Java的堆内存与栈内存的存储机制

堆与内存优化
    今天测了一个项目的数据自动整理功能,对数据库中几万条记录及图片进行整理操作,运行接近到最后,爆出了java.lang.outOfMemoryError,java heap space方面的错误,以前写程序很少遇到这种内存上的错误,因为java有垃圾回收器机制,就一直没太关注。今天上网找了点资料,在此基础上做了个整理。

 一、堆和栈

堆—用new建立,垃圾回收器负责回收

1、程序开始运行时,JVM从OS获取一些内存,部分是堆内存。堆内存通常在存储地址的底层,向上排列。

2、堆是一个"运行时"数据区,类实例化的对象就是从堆上去分配空间的;

3、在堆上分配空间是通过"new"等指令建立的,堆是动态分配的内存大小,生存期也不必事先告诉编译器;

4、与C++不同的是,Java自动管理堆和栈,垃圾回收器可以自动回收不再使用的堆内存;

5、缺点是,由于要在运行时动态分配内存,所以内存的存取速度较慢。

栈—存放基本类型和引用类型,速度快

1、先进后出的数据结构,通常用于保存方法中的参数,局部变量;

2、在java中,所有基本类型(short,int, long, byte, float, double,boolean, char)和引用类型的变量都在栈中存储;

3、栈中数据的生存空间一般在当前scopes内(由{...}括起来的区域;

4、栈的存取速度比堆要快,仅次于直接位于CPU中的寄存器;

5、栈中的数据可以共享,多个引用可以指向同一个地址;

6、缺点是,栈的数据大小与生存期必须是确定的,缺乏灵活性。

 二、内存设置

1、查看虚拟机内存情况

long maxControl = Runtime.getRuntime().maxMemory();//获取虚拟机可以控制的最大内存数量
long currentUse = Runtime.getRuntime().totalMemory();//获取虚拟机当前已使用的内存数量

默认情况下,java虚拟机的maxControl=66650112B=63.5625M;

什么都不做的情况,在我的机子上测得的currentUse=5177344B=4.9375M;

2、设置内存大小的命令

-Xms<size> set initial Java heap size :设置JVM初始化堆内存大小;此值可以设置与-Xmx相同,以避免每次垃圾回收完成后JVM重新分配内存。

-Xmx<size> set maximum Java heap size:设置JVM最大的堆内存大小;

-Xmn<size>:设置年轻代大小,整个堆大小=年轻代大小+ 年老代大小+ 持久代大小。

-Xss<size> set java thread stack size:设置JVM线程栈内存大小;
          3、具体操作
             (1)JVM内存设置:
              打开MyEclipse(Eclipse)  window-preferences-Java -Installed JREs -Edit -Default VM Arguments  
              在VM自变量中输入:-Xmx128m -Xms64m -Xmn32m -Xss16m

(2)IDE内存设置:

在MyEclipse根目录下的myeclipse.ini(或Eclipse根目录下的eclipse.ini)中修改-vmargs  下的配置:

(3)Tomcat内存设置

打开Tomcat根目录下的bin文件夹,编辑catalina.bat

修改为:set JAVA_OPTS= -Xms256m -Xmx512m

 三、Java堆中的OutOfMemoryError错误分析

当JVM启动时,使用了-Xms 参数设置的堆内存。当程序继续进行,创建更多对象,JVM开始扩大堆内存以容纳更多对象。JVM也会使用垃圾回收器来回收内存。当快达到-Xmx设置的最大堆内存时,如果没有更多的内存可被分配给新对象的话,JVM就会抛出java.lang.outofmemoryerror,程序就会宕掉。在抛出 OutOfMemoryError之前,JVM会尝试着用垃圾回收器来释放足够的空间,但是发现仍旧没有足够的空间时,就会抛出这个错误。为了解决这个问题,需要清楚程序对象的信息,例如,你创建了哪些对象,哪些对象占用了多少空间等等。可以使用profiler或者堆分析器来处理OutOfMemoryError错误。"java.lang.OutOfMemoryError: Java heap space”表示堆没有足够的空间了,不能继续扩大了。"java.lang.OutOfMemoryError: PermGen space”表示permanent generation已经装满了,你的程序不能再装载类或者再分配一个字符串了。

四、堆和垃圾回收

  我们知道对象创建在堆内存中,垃圾回收这样一个进程,它将已死对象清除出堆空间,并将这些内存再还给堆。为了给垃圾回收器使用,堆主要分成三个区域,分别叫作New Generation,Old Generation或叫Tenured Generation,以及Perm space。New Generation是用来存放新建的对象的空间,在对象新建的时候被使用。如果长时间还使用的话,它们会被垃圾回收器移动到Old Generation(或叫Tenured Generation)。Perm space是JVM存放Meta数据的地方,例如类,方法,字符串池和类级别的详细信息。

 五、总结:

  1、Java堆内存是操作系统分配给JVM的内存的一部分。

  2、当我们创建对象时,它们存储在Java堆内存中。

  3、为了便于垃圾回收,Java堆空间分成三个区域,分别叫作New Generation, Old Generation或叫作Tenured Generation,还有Perm Space。

  4、你可以通过用JVM的命令行选项 -Xms, -Xmx, -Xmn来调整Java堆空间的大小。

  5、可以用JConsole或者Runtime.maxMemory(),Runtime.totalMemory(),Runtime.freeMemory()来查看Java中堆内存的大小。

  6、可以使用命令“jmap”来获得heap dump,用“jhat”来分析heap dump。

  7、Java堆空间不同于栈空间,栈空间是用来储存调用栈和局部变量的。

  8、Java垃圾回收器是用来将死掉的对象(不再使用的对象)所占用的内存回收回来,再释放到Java堆空间中。

  9、当遇到java.lang.outOfMemoryError时,不必紧张,有时候仅仅增加堆空间就可以了,但如果经常出现的话,就要看看Java程序中是不是存在内存泄露了。

  10、使用Profiler和Heap dump分析工具来查看Java堆空间,可以查看给每个对象分配了多少内存。

栈存储详解

Java栈存储具有以下几个特点:

一、存在栈中的数据大小和生命周期必须是确定的。

如基本类型的存储:int a = 1; 这种变量存的是字面值,a是一个指向int类型的引用,指向3这个字面值。这些字面值的数据,由于大小可知,生存期可知(这些字面值固定定义在某个程序块里面,程序块退出后,字面值就消失了),出于追求速度的原因,就存在于栈中。

二、存在栈中的数据可以共享。

(1)、基本类型数据存储:

如:

int a = 3;
      int b = 3;

 编译器先处理int a = 3;首先它会在栈中创建一个变量为a的引用,然后查找有没有字面值为3的地址,没找到,就开辟一个存放3这个字面值的地址,然后将a指向3的地址。接着处理int b = 3;在创建完b的引用变量后,由于在栈中已经有3这个字面值,便将b直接指向3的地址。这样,就出现了a与b同时均指向3的情况。

注意:这种字面值的引用与类对象的引用不同。假定两个类对象的引用同时指向一个对象,如果一个对象引用变量修改了这个对象的内部状态,那么另一个对象引用变量也即刻反映出这个变化。相反,通过字面值的引用来修改其值,不会导致另一个指向此字面值的引用的值也跟着改变的情况。如上例,我们定义完a 与b的值后,再令a=4;那么,b不会等于4,还是等于3。在编译器内部,遇到a=4;时,它就会重新搜索栈中是否有4的字面值,如果没有,重新开辟地址存放4的值;如果已经有了,则直接将a指向这个地址。因此a值的改变不会影响到b的值。

(2)、包装类数据存储:

如Integer, Double, String等将相应的基本数据类型包装起来的类。这些类数据全部存在于堆中,Java用new()语句来显示地告诉编译器,在运行时才根据需要动态创建,因此比较灵活,但缺点是要占用更多的时间。

如:以String为例。

String是一个特殊的包装类数据。即可以用String str = new String("abc");的形式来创建,也可以用String str = "abc";的形式来创建。前者是规范的类的创建过程,即在Java中,一切都是对象,而对象是类的实例,全部通过new()的形式来创建。Java 中的有些类,如DateFormat类,可以通过该类的getInstance()方法来返回一个新创建的类,似乎违反了此原则。其实不然。该类运用了单例模式来返回类的实例,只不过这个实例是在该类内部通过new()来创建的,而getInstance()向外部隐藏了此细节。

那为什么在String str = "abc";中,并没有通过new()来创建实例,是不是违反了上述原则?其实没有。

关于String str = "abc"的内部工作。Java内部将此语句转化为以下几个步骤:
  a、先定义一个名为str的对String类的对象引用变量:String str;
  b、在栈中查找有没有存放值为"abc"的地址,如果没有,则开辟一个存放字面值为"abc"的地址,接着创建一个新的String类的对象O,并将O的字符串值指向这个地址,而且在栈中这个地址旁边记下这个引用的对象O。如果已经有了值为"abc"的地址,则查找对象O,并返回O的地址。
    c、将str指向对象O的地址。
 值得注意的是,通常String类中字符串值都是直接存值的。但像String str = "abc";这种场合下,其字符串值却是保存了一个指向存在栈中数据的引用(即:String str = "abc";既有栈存储,又有堆存储)。

为了更好地说明这个问题,我们可以通过以下的几个代码进行验证。

   String str1 = "abc";
   String str2 = "abc";
   System.out.println(str1==str2); //true 

(只有在两个引用都指向了同一个对象时才返回真值。str1与str2是否都指向了同一个对象)

结果说明,JVM创建了两个引用str1和str2,但只创建了一个对象,而且两个引用都指向了这个对象。

   String str1 = "abc";
   String str2 = "abc";
   str1 = "bcd";
   System.out.println(str1 + "," + str2); //bcd, abc
   System.out.println(str1==str2); //false

   这就是说,赋值的变化导致了类对象引用的变化,str1指向了另外一个新对象,而str2仍旧指向原来的对象。上例中,当我们将str1的值改为"bcd"时,JVM发现在栈中没有存放该值的地址,便开辟了这个地址,并创建了一个新的对象,其字符串的值指向这个地址。

  事实上,String类被设计成为不可改变(immutable)的类。如果你要改变其值,可以,但JVM在运行时根据新值悄悄创建了一个新对象(没法在原来内存的基础上改变其值),然后将这个对象的地址返回给原来类的引用。这个创建过程虽说是完全自动进行的,但它毕竟占用了更多的时间。在对时间要求比较敏感的环境中,会带有一定的不良影响。

   String str1 = "abc";
   String str2 = "abc";
   str1 = "bcd";
   String str3 = str1;
   System.out.println(str3); //bcd
   String str4 = "bcd";
   System.out.println(str1 == str4); //true

   str3这个对象的引用直接指向str1所指向的对象(注意,str3并没有创建新对象)。当str1改完其值后,再创建一个String的引用str4,并指向因str1修改值而创建的新的对象。可以发现,这回str4也没有创建新的对象,从而再次实现栈中数据的共享。

   String str1 = new String("abc");
   String str2 = "abc";
   System.out.println(str1==str2); //false

 创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。

  String str1 = "abc";
   String str2 = new String("abc");
   System.out.println(str1==str2); //false

 创建了两个引用。创建了两个对象。两个引用分别指向不同的两个对象。

  以上两段代码说明,只要是用new()来新建对象的,都会在堆中创建,而且其字符串是单独存值的,即使与栈中的数据相同,也不会与栈中的数据共享。

 总结:

  (1)我们在使用诸如String str = "abc";的格式定义类时,总是想当然地认为,我们创建了String类的对象str。担心陷阱!对象可能并没有被创建!唯一可以肯定的是,指向 String类的引用被创建了。至于这个引用到底是否指向了一个新的对象,必须根据上下文来考虑,除非你通过new()方法来显要地创建一个新的对象。因此,更为准确的说法是,我们创建了一个指向String类的对象的引用变量str,这个对象引用变量指向了某个值为"abc"的String类。清醒地认识到这一点对排除程序中难以发现的bug是很有帮助的。

  (2)使用String str = "abc";的方式,可以在一定程度上提高程序的运行速度,因为JVM会自动根据栈中数据的实际情况来决定是否有必要创建新对象。而对于String str = new String("abc");的代码,则一概在堆中创建新对象,而不管其字符串值是否相等,是否有必要创建新对象,从而加重了程序的负担。

  (3)由于String类的immutable性质(因为包装类的值不可修改),当String变量需要经常变换其值时,应该考虑使用StringBuffer类,以提高程序效率。

时间: 2015-12-31

Java栈之链式栈存储结构的实现代码

Java栈之链式栈存储结构实现 一.链栈 采用单链表来保存栈中所有元素,这种链式结构的栈称为链栈. 二.栈的链式存储结构实现 package com.ietree.basic.datastructure.stack; /** * 链栈 * * Created by ietree * 2017/4/29 */ public class LinkStack<T> { // 定义一个内部类Node,Node实例代表链栈的节点 private class Node { // 保存节点的数据 priva

Java中树的存储结构实现示例代码

一.树 树与线性表.栈.队列等线性结构不同,树是一种非线性结构. 一棵树只有一个根节点,如果一棵树有了多个根节点,那它已经不再是一棵树了,而是多棵树的集合,也被称为森林. 二.树的父节点表示法 树中除根节点之外每个节点都有一个父节点,为了记录树中节点与节点之间的父子关系,可以为每个节点增加一个parent域,用以记录该节点的父节点. package com.ietree.basic.datastructure.tree; import java.util.ArrayList; import ja

Java语言描述存储结构与邻接矩阵代码示例

存储结构 要存储一个图,我们知道图既有结点,又有边,对于有权图来说,每条边上还带有权值.常用的图的存储结构主要有以下二种: 邻接矩阵 邻接表 邻接矩阵 我们知道,要表示结点,我们可以用一个一维数组来表示,然而对于结点和结点之间的关系,则无法简单地用一维数组来表示了,我们可以用二维数组来表示,也就是一个矩阵形式的表示方法. 我们假设A是这个二维数组,那么A中的一个元素aij不仅体现出了结点vi和结点vj的关系,而且aij的值正可以表示权值的大小. 以下是一个无向图的邻接矩阵表示示例: 从上图我们可

Java实现级联下拉结构的示例代码

目录 前言 构建统一返回下拉结构 构建集合<对象>转下拉树工具类 构建List<Map>转下拉或下拉树的工具类 前言 在开发过程中,会遇到很多的实体需要将查出的数据处理为下拉或者级联下拉的结构,提供给前端进行展示. 在数据库查出的结构中,可能是集合<实体类>的结构,也有可能是List<Map>的结构. 在下拉或者级联下拉的节点数据中,有时候还需要动态的携带其他的参数,已便于前端对某些数据的显示 如区域的级联下拉树中,需要携带经纬度的区域–在选择的时候在地图展

Java用邻接表存储图的示例代码

目录 一.点睛 1.无向图 2.无向图的链接表 3.说明 4.无向图 二.邻接表的数据结构 1.节点 2.邻接点 三.算法步骤 四.实现 五.测试 一.点睛 邻接表是图的一种链式存储方法,其数据结构包括两部分:节点和邻接点. 用邻接表可以表示无向图,有向图和网.在此用无向图进行说明. 1.无向图 2.无向图的链接表 3.说明 节点 a 的邻接点是节点 b.d,其邻接点的存储下标为1.3,按照头插法(逆序)将其放入节点 a 后面的单链表中. 节点 b 的邻接点是节点 a.c.d,其邻接点的存储下标

java线性表的存储结构及其代码实现

Java数据结构学习笔记第一篇: 用程序后在那个的数据大致有四种基本的逻辑结构: 集合:数据元素之间只有"同属于一个集合"的关系 线性结构:数据元素之间存在一个对一个的关系 树形结构:数据元素之间存在一个对多个关系 图形结构或网状结构:数据元素之间存在多个对多个的关系 对于数据不同的逻辑结构,计算机在物理磁盘上通常有两种屋里存储结构 顺序存储结构 链式存储结构 本篇博文主要讲的是线性结构,而线性结构主要是线性表,非线性结构主要是树和图. 线性表的基本特征: 总存在唯一的第一个数据元素

Java中token的存储和获取实例代码

目录 1. 获取token的工具类 2. header存储token 2.1 前端存储token 2.2 访问携带token 2.3 后端获取token并进行验证(拦截器中进行验证) 3. URL中的属性值 4. Cookie 4.1 控制器代码 4.2 测试 向Cookie中插入key - value值!!! 总结 1. 获取token的工具类 问:为什么写工具类呢???答:因为我们不知道前端将token怎么存储的,所以我们可以通过调用Token工具类来获取token.Token工具类会检查h

java数据结构之树基本概念解析及代码示例

Java中树的存储结构实现 一.树 树与线性表.栈.队列等线性结构不同,树是一...节点与节点之间的父子关系,可以为每个节点增加一个parent域,用以记录该节点的父点 树是一种抽象数据类型(ADT)或是实作这种抽象数据类型的数据结构,用来模拟具有树状结构性质的数据集合.它是由n(n>0)个有限节点组成一个具有层次关系的集合.把 它叫做"树"是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的. 树定义和基本术语 定义 树(Tree)是n(n≥0)个结点的有限集T,并且当

java编程无向图结构的存储及DFS操作代码详解

图的概念 图是算法中是树的拓展,树是从上向下的数据结构,结点都有一个父结点(根结点除外),从上向下排列.而图没有了父子结点的概念,图中的结点都是平等关系,结果更加复杂. 无向图                                                       有向图 图G=(V,E),其中V代表顶点Vertex,E代表边edge,一条边就是一个定点对(u,v),其中(u,v)∈V. 这两天遇到一个关于图的算法,在网上找了很久没有找到java版的关于数据结构中图的存储及其

JAVA 实现二叉树(链式存储结构)

二叉树的分类(按存储结构) 树的分类(按存储结构) 顺序存储(用数组表示(静态二叉树))   链式存储 一些特别的二叉根: 完全二叉树,平衡二叉树(AVL),线索二叉树,三叉的(带父亲的指针)    二叉搜索树或者叫二叉 查找树(BST)  所用二叉树如下图所示: 二叉树的Java实现(链式存储结构) class TreeNode { private int key = 0; private String data = null; private boolean isVisted = false